301 lines
14 KiB
Python
301 lines
14 KiB
Python
# 给重力波用的
|
||
|
||
from dataclasses import dataclass
|
||
from os import path
|
||
import numpy as np
|
||
import netCDF4 as nc
|
||
import pandas as pd
|
||
from scipy.optimize import curve_fit
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 5---同周期下不同高度数据的BT_z背景位等指标计算 -
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# ----------------------------------------------------------------------------------
|
||
|
||
|
||
def power_indices(ktemp_cycles, ktemp_wn5, ktemp_ifft, altitude_min, altitude_max):
|
||
|
||
# 定义Brunt-Väisälä频率计算函数
|
||
def brunt_vaisala_frequency(g, BT_z, c_p, height):
|
||
# 计算位温随高度的变化率
|
||
dBT_z_dz = np.gradient(BT_z, height)
|
||
# 计算 Brunt-Väisälä 频率
|
||
return np.sqrt((g / BT_z) * ((g / c_p) + dBT_z_dz))
|
||
|
||
# 定义势能计算函数
|
||
def calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z):
|
||
return 0.5 * ((g / N_z) ** 2) * ((PT_z / BT_z) ** 2)
|
||
|
||
# 重力加速度
|
||
g = 9.81
|
||
# 空气比热容
|
||
c_p = 1004.5
|
||
|
||
height = np.linspace(altitude_min, altitude_max,
|
||
ktemp_cycles.shape[1]) * 1000 # 高度
|
||
background = ktemp_cycles - ktemp_wn5
|
||
|
||
# 初始化结果矩阵
|
||
N_z_matrix = []
|
||
# 初始化结果矩阵
|
||
PT_z_matrix = []
|
||
|
||
# 循环处理background和filtered_perturbation所有行
|
||
for i in range(background.shape[0]):
|
||
BT_z = np.array(background[i])
|
||
# 滤波后的扰动
|
||
PT_z = np.array(ktemp_ifft[i])
|
||
|
||
# 调用Brunt-Väisälä频率函数
|
||
N_z = brunt_vaisala_frequency(g, BT_z, c_p, height)
|
||
PT_z = calculate_gravitational_potential_energy(
|
||
g, BT_z, N_z, PT_z) # 调用势能函数
|
||
N_z_matrix.append(N_z)
|
||
PT_z_matrix.append(PT_z)
|
||
|
||
ktemp_Nz = np.vstack(N_z_matrix)
|
||
ktemp_Ptz = np.vstack(PT_z_matrix)
|
||
return ktemp_Nz, ktemp_Ptz
|
||
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 1---打开文件并读取不同变量数据 -
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
|
||
|
||
@dataclass
|
||
class NcData:
|
||
dataset: nc.Dataset
|
||
tplatitude: np.ndarray
|
||
tplongitude: np.ndarray
|
||
tpaltitude: np.ndarray
|
||
ktemp: np.ndarray
|
||
time: np.ndarray
|
||
date: np.ndarray
|
||
date_time: np.ndarray
|
||
|
||
path: str = None
|
||
|
||
# 兼容旧代码,老的解构方式也能用
|
||
def __iter__(self):
|
||
return iter([self.dataset, self.tplatitude, self.tplongitude, self.tpaltitude, self.ktemp, self.time, self.date, self.date_time])
|
||
|
||
|
||
ENABLE_SABER_FILTERING = False # 是否启用SABER数据的过滤
|
||
|
||
|
||
def data_nc_load(file_path):
|
||
|
||
dataset = nc.Dataset(file_path, 'r')
|
||
|
||
# do filtering
|
||
if ENABLE_SABER_FILTERING:
|
||
# lon_valid = (ds.tplongitude >= 0) & (ds.tplongitude <= 360)
|
||
lon_valid = (dataset.variables['tplongitude'][:] >= 0) & (
|
||
dataset.variables['tplongitude'][:] <= 360)
|
||
dataset = dataset.where(lon_valid, drop=True)
|
||
|
||
# 第二步:纬度筛选 (-90-90)
|
||
lat_valid = (dataset.variables['tplatitude'][:] >= -
|
||
90) & (dataset.variables['tplatitude'][:] <= 90)
|
||
dataset = dataset.where(lat_valid, drop=True)
|
||
|
||
# 第三步:温度筛选 (80-1000 或 -999)
|
||
temp_valid = ((dataset.variables['ktemp'][:] >= 80) & (
|
||
dataset.variables['ktemp'][:] <= 1000)) | (dataset.variables['ktemp'][:] == -999)
|
||
dataset = dataset.where(temp_valid, drop=True)
|
||
|
||
# 纬度数据,二维数组形状为(42820,379) 42820为事件,379则为不同高度
|
||
tplatitude = dataset.variables['tplatitude'][:, :]
|
||
tplongitude = dataset.variables['tplongitude'][:, :] # 经度数据
|
||
tpaltitude = dataset.variables['tpaltitude'][:, :] # 高度,二维数组形状为(42820,379)
|
||
time = dataset.variables['time'][:, :] # 二维数组形状为(42820,379)
|
||
date = dataset.variables['date'][:]
|
||
date_time = np.unique(date) # 输出数据时间信息
|
||
ktemp = dataset.variables['ktemp'][:, :] # 温度数据,二维数组形状为(42820,379)
|
||
|
||
return NcData(dataset, tplatitude, tplongitude, tpaltitude, ktemp, time, date, date_time, path=file_path)
|
||
# return dataset, tplatitude, tplongitude, tpaltitude, ktemp, time, date, date_time
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 2---筛选某一天、某个纬度和高度范围15个不同cycle的温度数据 -
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 2-1 读取某一天的所有事件及其对应的纬度数据
|
||
|
||
|
||
def day_data_read(date, day_read, tplatitude):
|
||
|
||
events = np.where(date == day_read)[0] # 读取筛选天的事件编号 4294-5714位置,从0开始编号
|
||
time_events = date[date == day_read] # 读取筛选天的事件编号 4294-5714位置,从0开始编号
|
||
latitudes = tplatitude[events, 189] # 输出每个事件中间位置 即第189个经纬度
|
||
df = pd.DataFrame([ # 创建一个包含事件编号、纬度的列表,共1421个事件
|
||
{'time': time, 'event': event, 'latitude': lat}
|
||
for time, event, lat in zip(time_events, events, latitudes)])
|
||
|
||
# print(df.head()) # 打印前几行数据以检查
|
||
|
||
return df
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 2-2 将事件按照卫星轨迹周期进行输出处理,并输出落在纬度范围内的每个周期的事件的行号
|
||
|
||
|
||
def data_cycle_identify(df, latitude_min, latitude_max):
|
||
|
||
cycles = [] # 存储每个周期的事件编号列表
|
||
# 存储当前周期的事件编号
|
||
current_cycle_events = []
|
||
prev_latitude = None
|
||
|
||
# 遍历DataFrame中的每一行以识别周期和筛选事件
|
||
for index, row in df.iterrows():
|
||
current_event = int(row['event'])
|
||
current_latitude = row['latitude']
|
||
|
||
if prev_latitude is not None and prev_latitude < 0 and current_latitude >= 0: # 检查是否是新周期的开始(纬度从负变正,且首次变正)
|
||
# 重置当前周期的事件编号列表
|
||
current_cycle_events = []
|
||
|
||
if latitude_min <= current_latitude <= latitude_max: # 如果事件的纬度在指定范围内,添加到当前周期的事件编号列表
|
||
current_cycle_events.append(current_event)
|
||
|
||
if prev_latitude is not None and prev_latitude >= 0 and current_latitude < 0: # 检查是否是周期的结束(纬度从正变负)
|
||
|
||
# 添加当前周期的事件编号列表到周期列表
|
||
if current_cycle_events: # 确保当前周期有事件编号
|
||
cycles.append(current_cycle_events)
|
||
current_cycle_events = [] # 重置当前周期的事件编号列表
|
||
prev_latitude = current_latitude
|
||
|
||
if current_cycle_events: # 处理最后一个周期,如果存在的话
|
||
cycles.append(current_cycle_events)
|
||
|
||
print(f"一天周期为 {len(cycles)}")
|
||
for cycle_index, cycle in enumerate(cycles, start=0):
|
||
# 屏幕显示每个循环周期的事件
|
||
print(f"周期 {cycle_index} 包含事件个数: {len(cycle)} 具体事件为: {cycle} ")
|
||
|
||
return cycles
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 2-3---按照循环周期合并同周期数据,并输出处理后的温度数据、对应的高度数据
|
||
|
||
|
||
def data_cycle_generate(cycles, ktemp, tpaltitude, altitude_min, altitude_max):
|
||
if not cycles: # 如果周期列表为空,跳过当前迭代
|
||
return None, None
|
||
|
||
ktemp_cycles = [] # 初始化列表存储每个周期的温度
|
||
altitude_cycles = [] # 初始化每个循环周期的高度数据
|
||
for event in cycles:
|
||
ktemp_cycles_events = np.array(ktemp[event, :]) # 获取每个周期各个事件的ktemp数据
|
||
ktemp_cycles_events[
|
||
np.logical_or(ktemp_cycles_events == -999, ktemp_cycles_events > 999)] = np.nan # 缺失值处理,避免影响结果
|
||
ktemp_cycles_mean = np.nanmean(
|
||
ktemp_cycles_events, axis=0) # 对所有周期的 ktemp 数据取均值
|
||
|
||
altitude_cycles_mean = tpaltitude[event[0], :] # 使用第一个的高度来表征所有的
|
||
altitude_indices = np.where((altitude_cycles_mean >= altitude_min) & (
|
||
altitude_cycles_mean <= altitude_max))[0]
|
||
|
||
ktemp_cycles.append(np.array(ktemp_cycles_mean[altitude_indices]))
|
||
altitude_cycles.append(
|
||
np.array(altitude_cycles_mean[altitude_indices]))
|
||
|
||
min_length = 157 # min(len(arr) for arr in ktemp_cycles) # 找到最短列表的长度
|
||
ktemp_cycles = np.vstack([arr[:min_length]
|
||
for arr in ktemp_cycles]) # 创建新的列表,将每个子列表截断为最短长度
|
||
altitude_cycles = np.vstack([arr[:min_length] for arr in altitude_cycles])
|
||
|
||
return ktemp_cycles, altitude_cycles
|
||
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 4---高度相同下不同循环周期数据的波拟合和滤波处理 -
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
|
||
|
||
# 对输入数据按照行(即纬向)进行波数为k的滤波,数据为15*157
|
||
def fit_wave(ktemp_wn0, k):
|
||
|
||
wave_fit = []
|
||
|
||
def single_harmonic(x, A, phi, C, k):
|
||
return A * np.sin(2 * np.pi / (15/k) * x + phi) + C
|
||
|
||
# 数据转置并对每行进行操作,按照同高度数据进行处理
|
||
for rtemp in ktemp_wn0.T:
|
||
# 为当前高度层创建索引数组
|
||
indices = np.arange(rtemp.size)
|
||
def fit_temp(x, A, phi, C): return single_harmonic(
|
||
x, A, phi, C, k) # 定义只拟合 A, phi, C 的 lambda 函数,k 固定
|
||
params, params_covariance = curve_fit(
|
||
fit_temp, indices, rtemp) # 使用 curve_fit 进行拟合
|
||
# 提取拟合参数 A, phi, C
|
||
A, phi, C = params
|
||
# 使用拟合参数计算 wn3
|
||
rtemp1 = single_harmonic(indices, A, phi, C, k)
|
||
# 存储拟合参数和拟合曲线
|
||
wave_fit.append(np.array(rtemp1))
|
||
wave_fit = np.vstack(wave_fit)
|
||
|
||
wave_fit = wave_fit.T
|
||
wave_wn = ktemp_wn0-wave_fit
|
||
|
||
return wave_fit, wave_wn
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
|
||
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 4---同周期下不同高度数据的波拟合和滤波处理 -
|
||
# ----------------------------------------------------------------------------------------------------------------------------
|
||
# 对输入数据按照列(即纬向)进行滤波,滤除波长2和15km以内的波, 数据为15*157
|
||
def fft_ifft_wave(ktemp_wn5, lamda_low, lamda_high, altitude_min, altitude_max, lvboin):
|
||
|
||
ktemp_fft = []
|
||
ktemp_ifft = []
|
||
ktemp_fft_lvbo = []
|
||
|
||
for rtemp in ktemp_wn5:
|
||
# 采样点数或长度
|
||
N = len(rtemp)
|
||
# 采样时间间隔,其倒数等于采用频率,以1km为标准尺度等同于1s,假设波的速度为1km/s
|
||
dt = (altitude_max-altitude_min)/(N-1)
|
||
# 时间序列索引
|
||
n = np.arange(N)
|
||
# # t = altitude_min + n * dt # 时间向量
|
||
# t = np.round(np.linspace(altitude_min, altitude_max, N),2)
|
||
# 频率索引向量
|
||
f = n / (N * dt)
|
||
# 对输入信号进行傅里叶变换
|
||
y = np.fft.fft(rtemp)
|
||
|
||
# 定义波长滤波范围(以频率计算) # 高频截止频率
|
||
f_low = 2*np.pi / lamda_high
|
||
f_high = 2*np.pi / lamda_low
|
||
|
||
# f_low = 1 / lamda_high # 定义波长滤波范围(以频率计算) # 高频截止频率
|
||
# f_high = 1 / lamda_low # 低频截止频率
|
||
|
||
# 创建滤波后的频域信号
|
||
yy = y.copy()
|
||
|
||
# 使用逻辑索引过滤特定频段(未确定)
|
||
if lvboin:
|
||
freq_filter = (f > f_low) & (f < f_high) # 创建逻辑掩码
|
||
else:
|
||
freq_filter = (f < f_low) | (f > f_high) # 创建逻辑掩码
|
||
|
||
yy[freq_filter] = 0 # 过滤掉指定频段
|
||
yy_ifft = np.real(np.fft.ifft(yy))
|
||
|
||
ktemp_fft.append(y)
|
||
# 存储拟合参数和拟合曲线
|
||
ktemp_ifft.append(np.array(yy_ifft))
|
||
ktemp_fft_lvbo.append(yy)
|
||
|
||
ktemp_fft = np.vstack(ktemp_fft)
|
||
ktemp_ifft = np.vstack(ktemp_ifft)
|
||
ktemp_fft_lvbo = np.vstack(ktemp_fft_lvbo)
|
||
|
||
return ktemp_fft, ktemp_fft_lvbo, ktemp_ifft
|