932 lines
43 KiB
Python
932 lines
43 KiB
Python
# 原文件:TIDI循环重力波
|
||
|
||
import os
|
||
import pandas as pd
|
||
import numpy as np
|
||
from scipy.io import loadmat
|
||
from scipy.optimize import curve_fit
|
||
import matplotlib.pyplot as plt
|
||
import seaborn as sns
|
||
|
||
from CONSTANT import DATA_BASEPATH
|
||
# ---------------------------------------------------------------------------------------
|
||
# -----vzonal----------------------------------------------------------------------------
|
||
|
||
|
||
def process_vzonal_day(day, year=2015):
|
||
try:
|
||
# 读取数 据
|
||
base_path = DATA_BASEPATH.tidi
|
||
height_data = loadmat(rf"{base_path}/{year}/{day:03d}_Height.mat")
|
||
lat_data = loadmat(rf"{base_path}/{year}/{day:03d}_Lat.mat")
|
||
lon_data = loadmat(rf"{base_path}/{year}/{day:03d}_Lon.mat")
|
||
vmeridional_data = loadmat(
|
||
rf"{base_path}/{year}/{day:03d}_VMerdional.mat")
|
||
vzonal_data = loadmat(rf"{base_path}/{year}/{day:03d}_Vzonal.mat")
|
||
|
||
# 将数据转换为DataFrame
|
||
height_df = pd.DataFrame(height_data['Height'])
|
||
lat_df = pd.DataFrame(lat_data['Lat'])
|
||
lon_df = pd.DataFrame(lon_data['Lon'])
|
||
vmeridional_df = pd.DataFrame(vmeridional_data['VMerdional'])
|
||
vzonal_df = pd.DataFrame(vzonal_data['Vzonal'])
|
||
# 将经纬度拼接为两列并添加到对应的DataFrame中
|
||
lon_lat_df = pd.concat([lon_df, lat_df], axis=1)
|
||
lon_lat_df.columns = ['Longitude', 'Latitude']
|
||
# 筛选出10到30度纬度范围的数据
|
||
lat_filter = (lat_df.values >= 0) & (lat_df.values <= 20)
|
||
# 使用纬度范围过滤数据
|
||
vmeridional_filtered = vmeridional_df.iloc[:, lat_filter.flatten()]
|
||
vzonal_filtered = vzonal_df.iloc[:, lat_filter.flatten()]
|
||
lon_lat_filtered = lon_lat_df.iloc[lat_filter.flatten(), :]
|
||
# 接着对lon_lat_filtered的经度进行分组,0到360度每30度一个区间
|
||
bins = range(0, 361, 30)
|
||
group_labels = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||
|
||
lon_lat_filtered['Longitude_Group'] = pd.cut(
|
||
lon_lat_filtered['Longitude'], bins=bins, labels=group_labels)
|
||
|
||
# 获取所有唯一的经度分组标签并按照数值顺序排序
|
||
unique_groups = sorted(lon_lat_filtered['Longitude_Group'].unique(
|
||
), key=lambda x: int(x.split('-')[0]))
|
||
# 按照经度分组获取每个区间对应的vzonal_filtered、vmeridional_filtered数据
|
||
grouped_data = {}
|
||
insufficient_data_count = 0 # 用于计数数据不足的组数
|
||
|
||
for group in unique_groups:
|
||
mask = lon_lat_filtered['Longitude_Group'] == group
|
||
grouped_data[group] = {
|
||
'vzonal_filtered': vzonal_filtered.loc[:, mask],
|
||
'vmeridional_filtered': vmeridional_filtered.loc[:, mask],
|
||
'lon_lat_filtered': lon_lat_filtered.loc[mask]
|
||
}
|
||
|
||
# 计算有效值数量
|
||
vzonal_count = grouped_data[group]['vzonal_filtered'].notna(
|
||
).sum().sum()
|
||
vmeridional_count = grouped_data[group]['vmeridional_filtered'].notna(
|
||
).sum().sum()
|
||
|
||
if vzonal_count <= 20 or vmeridional_count <= 20:
|
||
insufficient_data_count += 1
|
||
|
||
# 如果超过6组数据不足,则抛出错误
|
||
# if insufficient_data_count > 6:
|
||
# raise ValueError("Insufficient data for more than 6 longitude groups in the specified latitude band.")
|
||
|
||
# 如果代码运行到这里,说明所有分组的数据量都足够或者不足的组数不超过6
|
||
print("所有分组的数据量都足够")
|
||
# -----------计算w0------------------------------------------------------------------------------------------
|
||
# 定义期望的12个区间的分组标签
|
||
expected_groups = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||
# 初始化一个空DataFrame来存储所有区间的均值廓线,列名设置为期望的分组标签
|
||
W0_profiles_df = pd.DataFrame(columns=expected_groups)
|
||
|
||
# 遍历grouped_data字典中的每个组
|
||
for group, data in grouped_data.items():
|
||
# 提取当前组的vzonal_filtered数据
|
||
vzonal_filtered = data['vzonal_filtered']
|
||
# 计算有效数据的均值廓线,跳过NaN值
|
||
mean_profile = vzonal_filtered.mean(axis=1, skipna=True)
|
||
# 将当前组的均值廓线作为一列添加到W0_profiles_df DataFrame中
|
||
W0_profiles_df[group] = mean_profile
|
||
|
||
# 检查并填充缺失的区间列,将缺失的列添加并填充为NaN
|
||
for group in expected_groups:
|
||
if group not in W0_profiles_df.columns:
|
||
W0_profiles_df[group] = pd.Series(
|
||
[float('NaN')] * len(W0_profiles_df))
|
||
|
||
# 打印拼接后的DataFrame以验证
|
||
# print("Concatenated mean profiles for all longitude groups:\n", W0_profiles_df)
|
||
# 计算每个高度的均值
|
||
height_mean_profiles = W0_profiles_df.mean(axis=1)
|
||
# 将每个高度的均值作为新的一行添加到DataFrame中,All_Heights_Mean就是wn0
|
||
W0_profiles_df['All_Heights_Mean'] = height_mean_profiles
|
||
wn0_df = W0_profiles_df['All_Heights_Mean']
|
||
# -------计算残余量--------------------------------------------------------------------------------------
|
||
# 计算每个经度区间的残余值 (即每个区间的值减去该高度的All_Heights_Mean)
|
||
residuals_df = W0_profiles_df.drop(columns='All_Heights_Mean').subtract(
|
||
W0_profiles_df['All_Heights_Mean'], axis=0)
|
||
|
||
# --------wn1-------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 12 * x + phi) + C
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results = []
|
||
for index, row in residuals_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results_df = pd.DataFrame(fit_results, columns=['A', 'phi', 'C'])
|
||
# print(fit_results_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn1_values = []
|
||
for index, row in fit_results_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn1 = single_harmonic(x, A, phi, C)
|
||
wn1_values.append(wn1)
|
||
# 将拟合值转换为DataFrame
|
||
wn1_df = pd.DataFrame(wn1_values, columns=[
|
||
f'wn1_{i}' for i in range(12)])
|
||
# print(wn1_df)
|
||
# 如果wn1_df全为0,则跳过下面的计算,直接令该天的day_log_gwresult全部为NaN
|
||
if (wn1_df == 0).all().all():
|
||
return pd.Series(np.nan, index=range(21))
|
||
# ------------计算temp-wn0-wn1---------------------------------------------------------
|
||
temp_wn0_wn1 = residuals_df.values - wn1_df.values
|
||
# 将结果转为 DataFrame
|
||
temp_wn0_wn1_df = pd.DataFrame(
|
||
temp_wn0_wn1, columns=residuals_df.columns, index=residuals_df.index)
|
||
|
||
# -------wn2--------------------------------------------------------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 6 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results2 = []
|
||
for index, row in temp_wn0_wn1_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results2.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results2.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results2.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results2_df = pd.DataFrame(fit_results2, columns=['A', 'phi', 'C'])
|
||
# print(fit_results2_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn2_values = []
|
||
for index, row in fit_results2_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn2 = single_harmonic(x, A, phi, C)
|
||
wn2_values.append(wn2)
|
||
# 将拟合值转换为DataFrame
|
||
wn2_df = pd.DataFrame(wn2_values, columns=[
|
||
f'wn2_{i}' for i in range(12)])
|
||
# print(wn2_df)
|
||
# ---------计算temp-wn0-wn1-wn2------------------------------------------------------
|
||
temp_wn0_wn1_wn2 = temp_wn0_wn1_df.values - wn2_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_df = pd.DataFrame(
|
||
temp_wn0_wn1_wn2, columns=temp_wn0_wn1_df.columns)
|
||
|
||
# -------wn3-----------------------------------------------------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 4 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results3 = []
|
||
for index, row in temp_wn0_wn1_wn2_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results3.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results3.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results3.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results3_df = pd.DataFrame(fit_results3, columns=['A', 'phi', 'C'])
|
||
# print(fit_results3_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn3_values = []
|
||
for index, row in fit_results3_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn3 = single_harmonic(x, A, phi, C)
|
||
wn3_values.append(wn3)
|
||
# 将拟合值转换为DataFrame
|
||
wn3_df = pd.DataFrame(wn3_values, columns=[
|
||
f'wn3_{i}' for i in range(12)])
|
||
# print(wn3_df)
|
||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||
temp_wn0_wn1_wn2_wn3 = temp_wn0_wn1_wn2_df.values - wn3_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_wn3_df = pd.DataFrame(
|
||
temp_wn0_wn1_wn2_wn3, columns=temp_wn0_wn1_wn2_df.columns)
|
||
# -------wn4 - ----------------------------------------------------------------------
|
||
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 3 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results4 = []
|
||
for index, row in temp_wn0_wn1_wn2_wn3_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results4.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results4.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results4.append((0, 0, 0))
|
||
|
||
fit_results4_df = pd.DataFrame(fit_results4, columns=['A', 'phi', 'C'])
|
||
# print(fit_results4_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn4_values = []
|
||
for index, row in fit_results4_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn4 = single_harmonic(x, A, phi, C)
|
||
wn4_values.append(wn4)
|
||
# 将拟合值转换为DataFrame
|
||
wn4_df = pd.DataFrame(wn4_values, columns=[
|
||
f'wn4_{i}' for i in range(12)])
|
||
# print(wn4_df)
|
||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||
temp_wn0_wn1_wn2_wn3_wn4 = temp_wn0_wn1_wn2_wn3_df.values - wn4_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_wn3_wn4_df = pd.DataFrame(
|
||
temp_wn0_wn1_wn2_wn3_wn4, columns=temp_wn0_wn1_wn2_wn3_df.columns)
|
||
|
||
# -------wn5-----------------------------------------------------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 2.4 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results5 = []
|
||
for index, row in temp_wn0_wn1_wn2_wn3_wn4_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results5.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results5.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results5.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results5_df = pd.DataFrame(fit_results5, columns=['A', 'phi', 'C'])
|
||
# print(fit_results5_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn5_values = []
|
||
for index, row in fit_results5_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn5 = single_harmonic(x, A, phi, C)
|
||
wn5_values.append(wn5)
|
||
# 将拟合值转换为DataFrame
|
||
wn5_df = pd.DataFrame(wn5_values, columns=[
|
||
f'wn5_{i}' for i in range(12)])
|
||
# print(wn5_df)
|
||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||
temp_wn0_wn1_wn2_wn3_wn4_wn5 = temp_wn0_wn1_wn2_wn3_wn4_df.values - wn5_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_wn3_wn4_wn5_df = pd.DataFrame(temp_wn0_wn1_wn2_wn3_wn4_wn5,
|
||
columns=temp_wn0_wn1_wn2_wn3_wn4_df.columns)
|
||
|
||
# ------计算背景温度=wn0+wn1+wn2+wn3+wn4+wn5---------------------------------------------------
|
||
background = wn5_df.values + wn4_df.values + \
|
||
wn3_df.values + wn2_df.values + wn1_df.values
|
||
# wn0只有一列单独处理相加
|
||
# 使用 np.isnan 和 np.where 来判断是否为 NaN 或 0,避免这些值参与相加
|
||
for i in range(21):
|
||
wn0_value = wn0_df.iloc[i]
|
||
# 只有当 wn0_value 既不是 NaN 也不是 0 时才加到 background 上
|
||
if not np.isnan(wn0_value) and wn0_value != 0:
|
||
background[i, :] += wn0_value
|
||
# 扰动
|
||
perturbation = temp_wn0_wn1_wn2_wn3_wn4_wn5_df
|
||
# ---------傅里叶变换----------------------------------------------------------------------
|
||
# 初始化一个新的DataFrame来保存处理结果
|
||
result = pd.DataFrame(
|
||
np.nan, index=perturbation.index, columns=perturbation.columns)
|
||
# 定义滤波范围
|
||
lambda_low = 2 # 2 km
|
||
lambda_high = 15 # 15 km
|
||
f_low = 2 * np.pi / lambda_high
|
||
f_high = 2 * np.pi / lambda_low
|
||
|
||
# 循环处理perturbation中的每一列
|
||
for col in perturbation.columns:
|
||
x = perturbation[col]
|
||
# 提取有效值
|
||
valid_values = x.dropna()
|
||
N = len(valid_values) # 有效值的数量
|
||
|
||
# 找到第一个有效值的索引
|
||
first_valid_index = valid_values.index[0] if not valid_values.index.empty else None
|
||
height_value = height_df.loc[first_valid_index] if first_valid_index is not None else None
|
||
|
||
# 如果有效值为空,则跳过该列
|
||
if N == 0 or height_value is None:
|
||
continue
|
||
|
||
# 时间序列和频率
|
||
dt = 0.25
|
||
n = np.arange(N)
|
||
t = height_value.values + n * dt
|
||
f = n / (N * dt)
|
||
|
||
# 傅里叶变换
|
||
y = np.fft.fft(valid_values.values)
|
||
|
||
# 频率滤波
|
||
yy = y.copy()
|
||
freq_filter = (f < f_low) | (f > f_high)
|
||
yy[freq_filter] = 0 # 过滤掉指定频段
|
||
|
||
# 逆傅里叶变换
|
||
perturbation_after = np.real(np.fft.ifft(yy))
|
||
|
||
# 将处理结果插回到result矩阵中
|
||
result.loc[valid_values.index, col] = perturbation_after
|
||
u2 = result ** 2
|
||
u2 = u2.mean(axis=1)
|
||
return u2
|
||
except FileNotFoundError:
|
||
# 如果文件不存在,返回全NaN的Series
|
||
expected_length = 21
|
||
return pd.Series(np.nan, index=range(expected_length))
|
||
|
||
|
||
# 初始化一个空的DataFrame来存储所有天的结果
|
||
|
||
|
||
# -------------------------------------------------------------------------------------------
|
||
# --------meridional-------------------------------------------------------------------------
|
||
def process_vmeridional_day(day, year=2015):
|
||
try:
|
||
# 读取数据
|
||
base_path = DATA_BASEPATH.tidi
|
||
|
||
height_data = loadmat(rf"{base_path}/{year}/{day:03d}_Height.mat")
|
||
lat_data = loadmat(rf"{base_path}/{year}/{day:03d}_Lat.mat")
|
||
lon_data = loadmat(rf"{base_path}/{year}/{day:03d}_Lon.mat")
|
||
vmeridional_data = loadmat(
|
||
rf"{base_path}/{year}/{day:03d}_VMerdional.mat")
|
||
vzonal_data = loadmat(rf"{base_path}/{year}/{day:03d}_Vzonal.mat")
|
||
|
||
# 将数据转换为DataFrame
|
||
height_df = pd.DataFrame(height_data['Height'])
|
||
lat_df = pd.DataFrame(lat_data['Lat'])
|
||
lon_df = pd.DataFrame(lon_data['Lon'])
|
||
vmeridional_df = pd.DataFrame(vmeridional_data['VMerdional'])
|
||
vzonal_df = pd.DataFrame(vzonal_data['Vzonal'])
|
||
# 将经纬度拼接为两列并添加到对应的DataFrame中
|
||
lon_lat_df = pd.concat([lon_df, lat_df], axis=1)
|
||
lon_lat_df.columns = ['Longitude', 'Latitude']
|
||
# 筛选出10到30度纬度范围的数据
|
||
lat_filter = (lat_df.values >= 0) & (lat_df.values <= 20)
|
||
# 使用纬度范围过滤数据
|
||
vmeridional_filtered = vmeridional_df.iloc[:, lat_filter.flatten()]
|
||
vzonal_filtered = vzonal_df.iloc[:, lat_filter.flatten()]
|
||
lon_lat_filtered = lon_lat_df.iloc[lat_filter.flatten(), :]
|
||
# 接着对lon_lat_filtered的经度进行分组,0到360度每30度一个区间
|
||
bins = range(0, 361, 30)
|
||
group_labels = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||
|
||
lon_lat_filtered['Longitude_Group'] = pd.cut(
|
||
lon_lat_filtered['Longitude'], bins=bins, labels=group_labels)
|
||
|
||
# 获取所有唯一的经度分组标签并按照数值顺序排序
|
||
unique_groups = sorted(lon_lat_filtered['Longitude_Group'].unique(
|
||
), key=lambda x: int(x.split('-')[0]))
|
||
# 按照经度分组获取每个区间对应的vzonal_filtered、vmeridional_filtered数据
|
||
grouped_data = {}
|
||
insufficient_data_count = 0 # 用于计数数据不足的组数
|
||
|
||
for group in unique_groups:
|
||
mask = lon_lat_filtered['Longitude_Group'] == group
|
||
grouped_data[group] = {
|
||
'vzonal_filtered': vzonal_filtered.loc[:, mask],
|
||
'vmeridional_filtered': vmeridional_filtered.loc[:, mask],
|
||
'lon_lat_filtered': lon_lat_filtered.loc[mask]
|
||
}
|
||
|
||
# 计算有效值数量
|
||
vzonal_count = grouped_data[group]['vzonal_filtered'].notna(
|
||
).sum().sum()
|
||
vmeridional_count = grouped_data[group]['vmeridional_filtered'].notna(
|
||
).sum().sum()
|
||
|
||
if vzonal_count <= 20 or vmeridional_count <= 20:
|
||
insufficient_data_count += 1
|
||
|
||
# 如果超过6组数据不足,则抛出错误
|
||
# if insufficient_data_count > 6:
|
||
# raise ValueError(
|
||
# "Insufficient data for more than 6 longitude groups in the specified latitude band.")
|
||
|
||
# 如果代码运行到这里,说明所有分组的数据量都足够或者不足的组数不超过6
|
||
print("所有分组的数据量都足够")
|
||
# -----------计算w0------------------------------------------------------------------------------------------
|
||
# 定义期望的12个区间的分组标签
|
||
expected_groups = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||
# 初始化一个空DataFrame来存储所有区间的均值廓线,列名设置为期望的分组标签
|
||
W0_profiles_df = pd.DataFrame(columns=expected_groups)
|
||
|
||
# 遍历grouped_data字典中的每个组
|
||
for group, data in grouped_data.items():
|
||
# 提取当前组的vzonal_filtered数据
|
||
vmeridional_filtered = data['vmeridional_filtered']
|
||
# 计算有效数据的均值廓线,跳过NaN值
|
||
mean_profile = vmeridional_filtered.mean(axis=1, skipna=True)
|
||
# 将当前组的均值廓线作为一列添加到W0_profiles_df DataFrame中
|
||
W0_profiles_df[group] = mean_profile
|
||
|
||
# 检查并填充缺失的区间列,将缺失的列添加并填充为NaN
|
||
for group in expected_groups:
|
||
if group not in W0_profiles_df.columns:
|
||
W0_profiles_df[group] = pd.Series(
|
||
[float('NaN')] * len(W0_profiles_df))
|
||
|
||
# 打印拼接后的DataFrame以验证
|
||
# print("Concatenated mean profiles for all longitude groups:\n", W0_profiles_df)
|
||
# 计算每个高度的均值
|
||
height_mean_profiles = W0_profiles_df.mean(axis=1)
|
||
# 将每个高度的均值作为新的一行添加到DataFrame中,All_Heights_Mean就是wn0
|
||
W0_profiles_df['All_Heights_Mean'] = height_mean_profiles
|
||
wn0_df = W0_profiles_df['All_Heights_Mean']
|
||
# -------计算残余量--------------------------------------------------------------------------------------
|
||
# 计算每个经度区间的残余值 (即每个区间的值减去该高度的All_Heights_Mean)
|
||
residuals_df = W0_profiles_df.drop(columns='All_Heights_Mean').subtract(
|
||
W0_profiles_df['All_Heights_Mean'], axis=0)
|
||
|
||
# --------wn1-------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 12 * x + phi) + C
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results = []
|
||
for index, row in residuals_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results_df = pd.DataFrame(fit_results, columns=['A', 'phi', 'C'])
|
||
# print(fit_results_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn1_values = []
|
||
for index, row in fit_results_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn1 = single_harmonic(x, A, phi, C)
|
||
wn1_values.append(wn1)
|
||
# 将拟合值转换为DataFrame
|
||
wn1_df = pd.DataFrame(wn1_values, columns=[
|
||
f'wn1_{i}' for i in range(12)])
|
||
# print(wn1_df)
|
||
# 如果wn1_df全为0,则跳过下面的计算,直接令该天的day_log_gwresult全部为NaN
|
||
if (wn1_df == 0).all().all():
|
||
return pd.Series(np.nan, index=range(21))
|
||
# ------------计算temp-wn0-wn1---------------------------------------------------------
|
||
temp_wn0_wn1 = residuals_df.values - wn1_df.values
|
||
# 将结果转为 DataFrame
|
||
temp_wn0_wn1_df = pd.DataFrame(
|
||
temp_wn0_wn1, columns=residuals_df.columns, index=residuals_df.index)
|
||
|
||
# -------wn2--------------------------------------------------------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 6 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results2 = []
|
||
for index, row in temp_wn0_wn1_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results2.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results2.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results2.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results2_df = pd.DataFrame(fit_results2, columns=['A', 'phi', 'C'])
|
||
# print(fit_results2_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn2_values = []
|
||
for index, row in fit_results2_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn2 = single_harmonic(x, A, phi, C)
|
||
wn2_values.append(wn2)
|
||
# 将拟合值转换为DataFrame
|
||
wn2_df = pd.DataFrame(wn2_values, columns=[
|
||
f'wn2_{i}' for i in range(12)])
|
||
# print(wn2_df)
|
||
# ---------计算temp-wn0-wn1-wn2------------------------------------------------------
|
||
temp_wn0_wn1_wn2 = temp_wn0_wn1_df.values - wn2_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_df = pd.DataFrame(
|
||
temp_wn0_wn1_wn2, columns=temp_wn0_wn1_df.columns)
|
||
|
||
# -------wn3-----------------------------------------------------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 4 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results3 = []
|
||
for index, row in temp_wn0_wn1_wn2_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results3.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results3.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results3.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results3_df = pd.DataFrame(fit_results3, columns=['A', 'phi', 'C'])
|
||
# print(fit_results3_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn3_values = []
|
||
for index, row in fit_results3_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn3 = single_harmonic(x, A, phi, C)
|
||
wn3_values.append(wn3)
|
||
# 将拟合值转换为DataFrame
|
||
wn3_df = pd.DataFrame(wn3_values, columns=[
|
||
f'wn3_{i}' for i in range(12)])
|
||
# print(wn3_df)
|
||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||
temp_wn0_wn1_wn2_wn3 = temp_wn0_wn1_wn2_df.values - wn3_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_wn3_df = pd.DataFrame(
|
||
temp_wn0_wn1_wn2_wn3, columns=temp_wn0_wn1_wn2_df.columns)
|
||
# -------wn4 - ----------------------------------------------------------------------
|
||
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 3 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results4 = []
|
||
for index, row in temp_wn0_wn1_wn2_wn3_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results4.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results4.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results4.append((0, 0, 0))
|
||
|
||
fit_results4_df = pd.DataFrame(fit_results4, columns=['A', 'phi', 'C'])
|
||
# print(fit_results4_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn4_values = []
|
||
for index, row in fit_results4_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn4 = single_harmonic(x, A, phi, C)
|
||
wn4_values.append(wn4)
|
||
# 将拟合值转换为DataFrame
|
||
wn4_df = pd.DataFrame(wn4_values, columns=[
|
||
f'wn4_{i}' for i in range(12)])
|
||
# print(wn4_df)
|
||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||
temp_wn0_wn1_wn2_wn3_wn4 = temp_wn0_wn1_wn2_wn3_df.values - wn4_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_wn3_wn4_df = pd.DataFrame(
|
||
temp_wn0_wn1_wn2_wn3_wn4, columns=temp_wn0_wn1_wn2_wn3_df.columns)
|
||
|
||
# -------wn5-----------------------------------------------------------------------
|
||
def single_harmonic(x, A, phi, C):
|
||
return A * np.sin(2 * np.pi / 2.4 * x + phi) + C
|
||
|
||
# 用于存储每个高度拟合后的参数结果
|
||
fit_results5 = []
|
||
for index, row in temp_wn0_wn1_wn2_wn3_wn4_df.iterrows():
|
||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||
if row.isnull().any():
|
||
fit_results5.append((0, 0, 0))
|
||
continue
|
||
x = np.arange(12) # 对应12个位置作为自变量
|
||
y = row.values
|
||
try:
|
||
# 进行曲线拟合
|
||
popt, _ = curve_fit(single_harmonic, x, y)
|
||
fit_results5.append(popt)
|
||
except RuntimeError:
|
||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||
fit_results5.append((0, 0, 0))
|
||
# 将拟合结果转换为DataFrame
|
||
fit_results5_df = pd.DataFrame(fit_results5, columns=['A', 'phi', 'C'])
|
||
# print(fit_results5_df)
|
||
# 用于存储每个高度的拟合值
|
||
wn5_values = []
|
||
for index, row in fit_results5_df.iterrows():
|
||
A, phi, C = row
|
||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||
wn5 = single_harmonic(x, A, phi, C)
|
||
wn5_values.append(wn5)
|
||
# 将拟合值转换为DataFrame
|
||
wn5_df = pd.DataFrame(wn5_values, columns=[
|
||
f'wn5_{i}' for i in range(12)])
|
||
# print(wn5_df)
|
||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||
temp_wn0_wn1_wn2_wn3_wn4_wn5 = temp_wn0_wn1_wn2_wn3_wn4_df.values - wn5_df.values
|
||
# 转换为 DataFrame
|
||
temp_wn0_wn1_wn2_wn3_wn4_wn5_df = pd.DataFrame(temp_wn0_wn1_wn2_wn3_wn4_wn5,
|
||
columns=temp_wn0_wn1_wn2_wn3_wn4_df.columns)
|
||
|
||
# ------计算背景温度=wn0+wn1+wn2+wn3+wn4+wn5---------------------------------------------------
|
||
background = wn5_df.values + wn4_df.values + \
|
||
wn3_df.values + wn2_df.values + wn1_df.values
|
||
# wn0只有一列单独处理相加
|
||
# 使用 np.isnan 和 np.where 来判断是否为 NaN 或 0,避免这些值参与相加
|
||
for i in range(21):
|
||
wn0_value = wn0_df.iloc[i]
|
||
# 只有当 wn0_value 既不是 NaN 也不是 0 时才加到 background 上
|
||
if not np.isnan(wn0_value) and wn0_value != 0:
|
||
background[i, :] += wn0_value
|
||
# 扰动
|
||
perturbation = temp_wn0_wn1_wn2_wn3_wn4_wn5_df
|
||
# ---------傅里叶变换----------------------------------------------------------------------
|
||
# 初始化一个新的DataFrame来保存处理结果
|
||
result = pd.DataFrame(
|
||
np.nan, index=perturbation.index, columns=perturbation.columns)
|
||
# 定义滤波范围
|
||
lambda_low = 2 # 2 km
|
||
lambda_high = 15 # 15 km
|
||
f_low = 2 * np.pi / lambda_high
|
||
f_high = 2 * np.pi / lambda_low
|
||
|
||
# 循环处理perturbation中的每一列
|
||
for col in perturbation.columns:
|
||
x = perturbation[col]
|
||
# 提取有效值
|
||
valid_values = x.dropna()
|
||
N = len(valid_values) # 有效值的数量
|
||
|
||
# 找到第一个有效值的索引
|
||
first_valid_index = valid_values.index[0] if not valid_values.index.empty else None
|
||
height_value = height_df.loc[first_valid_index] if first_valid_index is not None else None
|
||
|
||
# 如果有效值为空,则跳过该列
|
||
if N == 0 or height_value is None:
|
||
continue
|
||
|
||
# 时间序列和频率
|
||
dt = 0.25
|
||
n = np.arange(N)
|
||
t = height_value.values + n * dt
|
||
f = n / (N * dt)
|
||
|
||
# 傅里叶变换
|
||
y = np.fft.fft(valid_values.values)
|
||
|
||
# 频率滤波
|
||
yy = y.copy()
|
||
freq_filter = (f < f_low) | (f > f_high)
|
||
yy[freq_filter] = 0 # 过滤掉指定频段
|
||
|
||
# 逆傅里叶变换
|
||
perturbation_after = np.real(np.fft.ifft(yy))
|
||
|
||
# 将处理结果插回到result矩阵中
|
||
result.loc[valid_values.index, col] = perturbation_after
|
||
v2 = result ** 2
|
||
v2 = v2.mean(axis=1)
|
||
return v2
|
||
except FileNotFoundError:
|
||
# 如果文件不存在,返回全NaN的Series
|
||
expected_length = 21
|
||
return pd.Series(np.nan, index=range(expected_length))
|
||
|
||
|
||
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
||
# 将日期转换为英文月份
|
||
|
||
|
||
def day_to_month(day):
|
||
# 累积每个月的天数,找到对应的月份
|
||
cumulative_days = 0
|
||
for i, days in enumerate(days_in_month):
|
||
cumulative_days += days
|
||
if day <= cumulative_days:
|
||
return f'{["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"][i]}'
|
||
|
||
|
||
class TidiGravityWPlotMonthly:
|
||
def __init__(self, year):
|
||
self.year = year
|
||
cache_path = f"{DATA_BASEPATH.tidi}/cache"
|
||
if os.path.exists(f"{cache_path}/{year}/all_days_vzonal_results.parquet") \
|
||
and os.path.exists(f"{cache_path}/{year}/all_days_vmeridional_results.parquet"):
|
||
all_days_vzonal_results = pd.read_parquet(
|
||
f"{cache_path}/{year}/all_days_vzonal_results.parquet")
|
||
all_days_vmeridional_results = pd.read_parquet(
|
||
f"{cache_path}/{year}/all_days_vmeridional_results.parquet")
|
||
else:
|
||
|
||
all_days_vzonal_results = pd.DataFrame()
|
||
|
||
# 循环处理每一天的数据
|
||
for day in range(1, 365):
|
||
u2 = process_vzonal_day(day, year)
|
||
all_days_vzonal_results[rf"{day:02d}"] = u2
|
||
|
||
# 将结果按列拼接
|
||
all_days_vzonal_results.columns = [
|
||
f"{day:02d}" for day in range(1, 365)]
|
||
# 初始化一个空的DataFrame来存储所有天的结果
|
||
all_days_vmeridional_results = pd.DataFrame()
|
||
|
||
# 循环处理每一天的数据
|
||
for day in range(1, 365):
|
||
v2 = process_vmeridional_day(day, year)
|
||
all_days_vmeridional_results[rf"{day:02d}"] = v2
|
||
|
||
# 将结果按列拼接
|
||
all_days_vmeridional_results.columns = [
|
||
f"{day:02d}" for day in range(1, 365)]
|
||
|
||
# cache the results
|
||
# if dir not exists, create it
|
||
if not os.path.exists(f"{cache_path}/{year}"):
|
||
os.makedirs(f"{cache_path}/{year}")
|
||
|
||
all_days_vzonal_results.to_parquet(
|
||
f"{cache_path}/{year}/all_days_vzonal_results.parquet")
|
||
all_days_vmeridional_results.to_parquet(
|
||
f"{cache_path}/{year}/all_days_vmeridional_results.parquet")
|
||
|
||
self.all_days_vzonal_results = all_days_vzonal_results
|
||
self.all_days_vmeridional_results = all_days_vmeridional_results
|
||
|
||
# ---------------------------------------------------------------------------------------------------
|
||
# --------经纬向风平方和计算动能--------------------------------------------------------------------------------
|
||
|
||
# 使用numpy.where来检查两个表格中的对应元素是否都不是NaN
|
||
sum_df = np.where(
|
||
pd.notna(all_days_vmeridional_results) & pd.notna(
|
||
all_days_vzonal_results),
|
||
all_days_vmeridional_results + all_days_vzonal_results,
|
||
np.nan
|
||
)
|
||
HP = 1/2*all_days_vmeridional_results+1/2*all_days_vzonal_results
|
||
heights = [70.0, 72.5, 75.0, 77.5, 80.0, 82.5, 85.0, 87.5, 90.0, 92.5,
|
||
95.0, 97.5, 100.0, 102.5, 105.0, 107.5, 110.0, 112.5, 115.0, 117.5, 120.0]
|
||
HP.index = heights
|
||
# # 将 DataFrame 保存为 Excel 文件
|
||
# HP.to_excel('HP_data.xlsx')
|
||
# ----------绘年统计图------------------------------------------------------------------------------------------------------------
|
||
data = HP
|
||
# 使用 reset_index() 方法将索引变为第一列
|
||
data = data.reset_index()
|
||
h = data.iloc[:, 0].copy() # 高度,保留作为纵坐标
|
||
dates = list(range(1, data.shape[1])) # 日期,作为横坐标
|
||
data0 = data.iloc[:, 1:].copy() # 绘图数据
|
||
'''数据处理'''
|
||
# 反转 h 以确保高度从下往上递增
|
||
self.h_reversed = h[::-1].reset_index(drop=True)
|
||
data0_reversed = data0[::-1].reset_index(drop=True)
|
||
# 将数值大于20的数据点替换为nan
|
||
data0_reversed[data0_reversed > 20] = float('nan')
|
||
# 转换成月份,365天
|
||
self.data0_reversed = data0_reversed
|
||
|
||
self.HP = HP
|
||
self.dates = dates
|
||
self.months = [day_to_month(day) for day in dates]
|
||
|
||
def plot_height(self):
|
||
h_reversed = self.h_reversed
|
||
data0_reversed = self.data0_reversed
|
||
dates = self.dates
|
||
months = self.months
|
||
'''绘图'''
|
||
plt.clf()
|
||
plt.rcParams['font.family'] = 'SimHei' # 宋体
|
||
plt.rcParams['font.size'] = 12 # 中文字号
|
||
plt.rcParams['axes.unicode_minus'] = False # 正确显示负号
|
||
plt.rcParams['font.sans-serif'] = 'Times New Roman' # 新罗马
|
||
plt.rcParams['axes.labelsize'] = 14 # 坐标轴标签字号
|
||
plt.rcParams['xtick.labelsize'] = 12 # x轴刻度字号
|
||
plt.rcParams['ytick.labelsize'] = 12 # y轴刻度字号
|
||
plt.rcParams['legend.fontsize'] = 16 # 图例字号
|
||
plt.rcParams['axes.unicode_minus'] = False # 正确显示负号
|
||
plt.figure(figsize=(10, 6)) # 设置图像大小
|
||
# 绘制热力图,设置 x 和 y 轴的标签
|
||
sns.heatmap(data0_reversed, annot=False, cmap='YlGnBu', linewidths=0.5,
|
||
yticklabels=h_reversed, xticklabels=months, cbar_kws={'label': ' Gravitational potential energy'})
|
||
|
||
# 横坐标过长,设置等间隔展示
|
||
interval = 34 # 横坐标显示间隔
|
||
plt.xticks(ticks=range(0, len(dates), interval),
|
||
labels=months[::interval], rotation=45) # rotation旋转可不加
|
||
|
||
# 添加轴标签
|
||
plt.xlabel('月') # X轴标签
|
||
plt.ylabel('高度') # Y轴标签
|
||
|
||
# 显示图形
|
||
# plt.show()
|
||
|
||
def plot_energy(self):
|
||
HP = self.HP
|
||
# --------------绘制月统计图-------------------------------------------------------------------
|
||
# 获取HP的列数
|
||
num_cols = HP.shape[1]
|
||
# 用于存储按要求计算出的均值列数据
|
||
mean_cols = []
|
||
start = 0
|
||
while start < num_cols:
|
||
end = start + 30
|
||
if end > num_cols:
|
||
end = num_cols
|
||
# 提取每30列(或不满30列的剩余部分)的数据
|
||
subset = HP.iloc[:, start:end]
|
||
# 计算该部分数据每一行的均值,得到一个Series,作为新的均值列
|
||
mean_series = subset.mean(axis=1)
|
||
mean_cols.append(mean_series)
|
||
start = end
|
||
# 将所有的均值列合并成一个新的DataFrame
|
||
result_df = pd.concat(mean_cols, axis=1)
|
||
# 对result_df中的每一个元素取自然对数
|
||
result_df_log = result_df.applymap(lambda x: np.log(x))
|
||
# 通过drop方法删除第一行,axis=0表示按行操作,inplace=True表示直接在原DataFrame上修改(若不想修改原DataFrame可设置为False)
|
||
result_df_log.drop(70, axis=0, inplace=True)
|
||
# 计算每个月的平均值
|
||
monthly_average = result_df_log.mean(axis=0)
|
||
# 将结果转换为 (1, 12) 形状
|
||
|
||
# 如果大于12, 就把最后一个给删了,保证能转换为(1, 12)
|
||
if len(monthly_average) > 12:
|
||
monthly_average = monthly_average[:-1]
|
||
|
||
monthly_average = monthly_average.values.reshape(1, 12)
|
||
monthly_average = monthly_average.ravel()
|
||
|
||
# 生成x轴的月份标签
|
||
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
||
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
||
|
||
# clear the last plot
|
||
plt.clf()
|
||
# 绘制折线图
|
||
plt.plot(months, monthly_average, marker='o', linestyle='-', color='b')
|
||
|
||
# 添加标题和标签
|
||
plt.title("月平均能量(结果取log)")
|
||
plt.xlabel("月")
|
||
plt.ylabel("平均能量")
|
||
# 显示图表
|
||
plt.xticks(rotation=45) # 让月份标签更清晰可读
|
||
plt.grid(True)
|
||
plt.tight_layout()
|
||
# 显示图形
|
||
# plt.show()
|