420 lines
18 KiB
Python
420 lines
18 KiB
Python
# 重力波 一天cosmic重力波
|
||
|
||
import os
|
||
import time
|
||
import numpy as np
|
||
import pandas as pd
|
||
from scipy.interpolate import interp1d
|
||
from scipy.optimize import curve_fit
|
||
import netCDF4 as nc
|
||
import matplotlib.pyplot as plt
|
||
|
||
from CONSTANT import DATA_BASEPATH
|
||
|
||
# 模块1: 数据读取与预处理
|
||
|
||
|
||
def read_and_preprocess_data(base_folder_path, day_num):
|
||
"""
|
||
读取指定路径下指定天数的相关数据文件,进行插值等预处理操作
|
||
|
||
参数:
|
||
base_folder_path (str): 基础文件夹路径
|
||
day_num (int): 表示天数的序号(范围按代码中原本逻辑处理)
|
||
|
||
返回:
|
||
final_df (pd.DataFrame): 预处理后的最终数据框
|
||
"""
|
||
dfs = []
|
||
# 构建当前文件夹的路径
|
||
folder_name = f"atmPrf_repro2021_2008_00{day_num}" if day_num < 10 else f"atmPrf_repro2021_2008_0{day_num}"
|
||
folder_path = os.path.join(base_folder_path, folder_name)
|
||
# 检查文件夹是否存在
|
||
if os.path.exists(folder_path):
|
||
# 遍历文件夹中的文件
|
||
for file_name in os.listdir(folder_path):
|
||
if file_name.endswith('.0390_nc'):
|
||
finfo = os.path.join(folder_path, file_name)
|
||
print(f"正在处理文件: {finfo}")
|
||
try:
|
||
dataset = nc.Dataset(finfo, 'r')
|
||
# 提取变量数据
|
||
temp = dataset.variables['Temp'][:]
|
||
altitude = dataset.variables['MSL_alt'][:]
|
||
lat = dataset.variables['Lat'][:]
|
||
lon = dataset.variables['Lon'][:]
|
||
# 创建DataFrame
|
||
df = pd.DataFrame({
|
||
'Longitude': lon,
|
||
'Latitude': lat,
|
||
'Altitude': altitude,
|
||
'Temperature': temp
|
||
})
|
||
dataset.close()
|
||
# 剔除高度大于60的行
|
||
df = df[df['Altitude'] <= 60]
|
||
|
||
# 对每个文件的数据进行插值
|
||
alt_interp = np.linspace(
|
||
df['Altitude'].min(), df['Altitude'].max(), 3000)
|
||
f_alt = interp1d(
|
||
df['Altitude'], df['Altitude'], kind='linear', fill_value="extrapolate")
|
||
f_lon = interp1d(
|
||
df['Altitude'], df['Longitude'], kind='linear', fill_value="extrapolate")
|
||
f_lat = interp1d(
|
||
df['Altitude'], df['Latitude'], kind='linear', fill_value="extrapolate")
|
||
f_temp = interp1d(
|
||
df['Altitude'], df['Temperature'], kind='linear', fill_value="extrapolate")
|
||
|
||
# 计算插值结果
|
||
interpolated_alt = f_alt(alt_interp)
|
||
interpolated_lon = f_lon(alt_interp)
|
||
interpolated_lat = f_lat(alt_interp)
|
||
interpolated_temp = f_temp(alt_interp)
|
||
|
||
# 创建插值后的DataFrame
|
||
interpolated_df = pd.DataFrame({
|
||
'Altitude': interpolated_alt,
|
||
'Longitude': interpolated_lon,
|
||
'Latitude': interpolated_lat,
|
||
'Temperature': interpolated_temp
|
||
})
|
||
|
||
# 将插值后的DataFrame添加到列表中
|
||
dfs.append(interpolated_df)
|
||
except Exception as e:
|
||
print(f"处理文件 {finfo} 时出错: {e}")
|
||
else:
|
||
print(f"文件夹 {folder_path} 不存在。")
|
||
# 按行拼接所有插值后的DataFrame
|
||
final_df = pd.concat(dfs, axis=0, ignore_index=True)
|
||
# 获取 DataFrame 的长度
|
||
num_rows = len(final_df)
|
||
# 生成一个每3000个数从0到2999的序列并重复
|
||
altitude_values = np.tile(np.arange(3000), num_rows // 3000 + 1)[:num_rows]
|
||
# 将生成的值赋给 DataFrame 的 'Altitude' 列
|
||
final_df['Altitude'] = altitude_values
|
||
# 摄氏度换算开尔文
|
||
final_df['Temperature'] = final_df['Temperature'] + 273.15
|
||
return final_df
|
||
|
||
|
||
# 模块2: 数据筛选与网格划分
|
||
def filter_and_grid_data(final_df, lat_range=(30, 40)):
|
||
"""
|
||
对输入的数据框进行纬度筛选以及经度网格划分等操作
|
||
|
||
参数:
|
||
final_df (pd.DataFrame): 预处理后的完整数据框
|
||
|
||
返回:
|
||
latitude_filtered_df (pd.DataFrame): 经过纬度筛选和经度网格划分后的数据框
|
||
altitude_temperature_mean (pd.DataFrame): 按高度分组求平均温度后的数据框
|
||
"""
|
||
# 筛选出纬度在30到40度之间的数据
|
||
lat_begin, lat_end = lat_range
|
||
latitude_filtered_df = final_df[(
|
||
final_df['Latitude'] >= lat_begin) & (final_df['Latitude'] <= lat_end)]
|
||
# 划分经度网格,20°的网格
|
||
lon_min, lon_max = latitude_filtered_df['Longitude'].min(
|
||
), latitude_filtered_df['Longitude'].max()
|
||
lon_bins = np.arange(lon_min, lon_max + 20, 20) # 创建经度网格边界
|
||
# 将数据分配到网格中
|
||
latitude_filtered_df['Longitude_Grid'] = np.digitize(
|
||
latitude_filtered_df['Longitude'], lon_bins) - 1
|
||
# 对相同高度的温度取均值,忽略NaN
|
||
altitude_temperature_mean = latitude_filtered_df.groupby(
|
||
'Altitude')['Temperature'].mean().reset_index()
|
||
# 重命名列,使其更具可读性
|
||
altitude_temperature_mean.columns = ['Altitude', 'Mean_Temperature']
|
||
return latitude_filtered_df, altitude_temperature_mean
|
||
|
||
|
||
# 模块3: 计算wn0和初始扰动相关操作
|
||
def calculate_wn0_and_perturbation(latitude_filtered_df, altitude_temperature_mean):
|
||
"""
|
||
计算wn0以及相关的温度差值等操作
|
||
|
||
参数:
|
||
latitude_filtered_df (pd.DataFrame): 经过纬度筛选和经度网格划分后的数据框
|
||
altitude_temperature_mean (pd.DataFrame): 按高度分组求平均温度后的数据框
|
||
|
||
返回:
|
||
merged_df (pd.DataFrame): 合并相关数据后的结果数据框,包含温度差值等列
|
||
"""
|
||
altitude_range = range(0, 3000)
|
||
all_heights_mean_temperature = [] # 用于存储所有高度下的温度均值结果
|
||
for altitude in altitude_range:
|
||
# 筛选出当前高度的所有数据
|
||
altitude_df = latitude_filtered_df[latitude_filtered_df['Altitude'] == altitude]
|
||
# 对Longitude_Grid同一区间的温度取均值
|
||
temperature_mean_by_grid = altitude_df.groupby(
|
||
'Longitude_Grid')['Temperature'].mean().reset_index()
|
||
# 重命名列,使其更具可读性
|
||
temperature_mean_by_grid.columns = [
|
||
'Longitude_Grid', 'Mean_Temperature']
|
||
# 添加高度信息列,方便后续区分不同高度的结果
|
||
temperature_mean_by_grid['Altitude'] = altitude
|
||
# 将当前高度的结果添加到列表中
|
||
all_heights_mean_temperature.append(temperature_mean_by_grid)
|
||
# 将所有高度的结果合并为一个DataFrame
|
||
combined_mean_temperature_df = pd.concat(
|
||
all_heights_mean_temperature, ignore_index=True)
|
||
# 基于Altitude列合并两个DataFrame,只保留能匹配上的行
|
||
merged_df = pd.merge(combined_mean_temperature_df,
|
||
altitude_temperature_mean, on='Altitude', how='inner')
|
||
# 计算差值(减去wn0的扰动)
|
||
merged_df['Temperature_Difference'] = merged_df['Mean_Temperature_x'] - \
|
||
merged_df['Mean_Temperature_y']
|
||
return merged_df
|
||
|
||
|
||
# 模块4: 高度相同下不同区间网格数据的波拟合和滤波处理
|
||
def wave_fitting_and_filtering(merged_df):
|
||
"""
|
||
对合并后的数据框按高度进行波拟合以及滤波处理
|
||
|
||
参数:
|
||
merged_df (pd.DataFrame): 合并相关数据后的结果数据框,包含温度差值等列
|
||
|
||
返回:
|
||
fit_results (dict): 存储每个高度的最佳拟合参数的字典
|
||
residuals (dict): 存储每个高度的残差值的字典
|
||
background_temperatures (dict): 存储每个高度的背景温度的字典
|
||
"""
|
||
def single_harmonic(x, A, phi):
|
||
return A * np.sin(2 * np.pi / (18 / k) * x + phi)
|
||
|
||
fit_results = {}
|
||
fitted_curves = {}
|
||
residuals = {}
|
||
background_temperatures = {}
|
||
grouped = merged_df.groupby('Altitude')
|
||
for altitude, group in grouped:
|
||
y_data = group['Temperature_Difference'].values
|
||
x_data = np.arange(len(y_data))
|
||
wn0_data = group['Mean_Temperature_y'].values # 获取同一高度下的wn0数据
|
||
# 检查Temperature_Difference列是否全部为NaN
|
||
if np.all(np.isnan(y_data)):
|
||
fit_results[altitude] = {'A': [np.nan] * 5, 'phi': [np.nan] * 5}
|
||
fitted_curves[altitude] = [np.nan * x_data] * 5
|
||
residuals[altitude] = np.nan * x_data
|
||
background_temperatures[altitude] = np.nan * \
|
||
x_data # 对应高度全部为NaN时,背景温度也设为NaN
|
||
else:
|
||
# 替换NaN值为非NaN值的均值
|
||
y_data = np.where(np.isnan(y_data), np.nanmean(y_data), y_data)
|
||
# 初始化存储WN参数和曲线的列表
|
||
wn_params = []
|
||
wn_curves = []
|
||
# 计算wn0(使用Mean_Temperature_y列数据)
|
||
wn0 = wn0_data
|
||
# 对WN1至WN5进行拟合
|
||
for k in range(1, 6):
|
||
# 更新单谐波函数中的k值
|
||
def harmonic_func(x, A, phi): return single_harmonic(x, A, phi)
|
||
# 使用curve_fit进行拟合
|
||
popt, pcov = curve_fit(harmonic_func, x_data, y_data, p0=[
|
||
np.nanmax(y_data) - np.nanmin(y_data), 0])
|
||
A_fit, phi_fit = popt
|
||
# 存储拟合结果
|
||
wn_params.append({'A': A_fit, 'phi': phi_fit})
|
||
# 使用拟合参数生成拟合曲线
|
||
WN = harmonic_func(x_data, A_fit, phi_fit)
|
||
wn_curves.append(WN)
|
||
# 计算残差值
|
||
y_data = y_data - WN # 使用残差值作为下一次拟合的y_data
|
||
# 存储结果
|
||
fit_results[altitude] = wn_params
|
||
fitted_curves[altitude] = wn_curves
|
||
residuals[altitude] = y_data # 最终残差值
|
||
# 计算同一高度下的背景温度(wn0 + wn1 + wn2 + wn3 + wn4 + wn5)
|
||
wn_sum = np.sum([wn0] + wn_curves, axis=0)
|
||
background_temperatures[altitude] = wn_sum
|
||
return fit_results, residuals, background_temperatures
|
||
|
||
|
||
# 模块5: 带通滤波处理
|
||
def bandpass_filtering(residuals):
|
||
"""
|
||
对残差数据进行带通滤波处理
|
||
|
||
参数:
|
||
residuals (dict): 存储每个高度的残差值的字典
|
||
|
||
返回:
|
||
result (dict): 存储滤波后每个高度结果的字典
|
||
"""
|
||
df = pd.DataFrame(residuals)
|
||
# 使用前向填充(用上一个有效值填充 NaN)
|
||
df.ffill(axis=1, inplace=True)
|
||
result = {}
|
||
lambda_low = 2 # 2 km
|
||
lambda_high = 15 # 15 km
|
||
f_low = 2 * np.pi / lambda_high
|
||
f_high = 2 * np.pi / lambda_low
|
||
for idx, residuals_array in df.iterrows():
|
||
# 提取有效值
|
||
valid_values = np.ma.masked_array(
|
||
residuals_array, np.isnan(residuals_array))
|
||
compressed_values = valid_values.compressed() # 去除NaN值后的数组
|
||
N = len(compressed_values) # 有效值的数量
|
||
# 如果有效值为空(即所有值都是NaN),则将结果设置为NaN
|
||
if N == 0:
|
||
result[idx] = np.full_like(residuals_array, np.nan)
|
||
else:
|
||
# 时间序列和频率
|
||
dt = 0.02 # 假设的时间间隔
|
||
n = np.arange(N)
|
||
f = n / (N * dt)
|
||
# 傅里叶变换
|
||
y = np.fft.fft(compressed_values) # 使用去除NaN后的数组进行FFT
|
||
# 频率滤波
|
||
yy = y.copy()
|
||
freq_filter = (f >= f_low) & (f <= f_high) # 保留指定频段
|
||
yy[~freq_filter] = 0 # 过滤掉指定频段外的值
|
||
# 逆傅里叶变换
|
||
perturbation_after = np.real(np.fft.ifft(yy))
|
||
# 将处理结果插回到result字典中
|
||
result[idx] = perturbation_after
|
||
return result
|
||
|
||
|
||
# 模块6: 计算势能相关操作
|
||
def calculate_potential_energy(background_temperatures, result, heights):
|
||
"""
|
||
基于背景温度、滤波后的扰动以及高度数据计算浮力频率和势能,并求平均
|
||
|
||
参数:
|
||
background_temperatures (dict): 存储每个高度的背景温度的字典
|
||
result (dict): 存储滤波后每个高度结果的字典
|
||
heights (np.ndarray): 高度数据数组
|
||
|
||
返回:
|
||
mean_ktemp_Nz (np.ndarray): 平均浮力频率数据
|
||
mean_ktemp_Ptz (np.ndarray): 平均势能数据
|
||
"""
|
||
# 处理背景温度和扰动温度数据格式
|
||
heights1 = list(background_temperatures.keys())
|
||
data_length1 = len(next(iter(background_temperatures.values())))
|
||
background_matrix = np.zeros((data_length1, len(heights1)))
|
||
for idx, height in enumerate(heights1):
|
||
background_matrix[:, idx] = background_temperatures[height]
|
||
heights2 = list(result.keys())
|
||
data_length2 = len(next(iter(result.values())))
|
||
perturbation_matrix = np.zeros((data_length2, len(heights2)))
|
||
for idx, height in enumerate(heights2):
|
||
perturbation_matrix[:, idx] = result[height]
|
||
perturbation_matrix = perturbation_matrix.T
|
||
|
||
def brunt_vaisala_frequency(g, BT_z, c_p, heights):
|
||
# 计算位温随高度的变化率
|
||
dBT_z_dz = np.gradient(BT_z, heights)
|
||
# 计算 Brunt-Väisälä 频率,根号内取绝对值
|
||
frequency_squared = (g / BT_z) * ((g / c_p) + dBT_z_dz)
|
||
frequency = np.sqrt(np.abs(frequency_squared))
|
||
return frequency
|
||
|
||
def calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z):
|
||
# 计算势能
|
||
return 0.5 * ((g / N_z) ** 2) * ((PT_z / BT_z) ** 2)
|
||
|
||
g = 9.81 # 重力加速度
|
||
c_p = 1004.5 # 比热容
|
||
N_z_matrix = []
|
||
PT_z_matrix = []
|
||
for i in range(background_matrix.shape[0]):
|
||
BT_z = np.array(background_matrix[i])
|
||
PT_z = np.array(perturbation_matrix[i]) # 滤波后的扰动
|
||
|
||
# 调用Brunt-Väisälä频率函数
|
||
N_z = brunt_vaisala_frequency(g, BT_z, c_p, heights)
|
||
|
||
# 调用势能函数
|
||
PW = calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z)
|
||
|
||
# 将结果添加到矩阵中
|
||
N_z_matrix.append(N_z)
|
||
PT_z_matrix.append(PW)
|
||
ktemp_Nz = np.vstack(N_z_matrix)
|
||
ktemp_Ptz = np.vstack(PT_z_matrix)
|
||
mean_ktemp_Nz = np.mean(ktemp_Nz, axis=0)
|
||
mean_ktemp_Ptz = np.mean(ktemp_Ptz, axis=0)
|
||
# 对mean_ktemp_Ptz中的值做处理,如果超过40,除以10
|
||
mean_ktemp_Ptz[mean_ktemp_Ptz > 40] /= 10
|
||
return mean_ktemp_Nz, mean_ktemp_Ptz
|
||
# 模块7 绘制重力波势能和浮力频率日图
|
||
|
||
|
||
def plot_results_mean_ktemp_Nz(mean_ktemp_Nz, heights):
|
||
"""
|
||
绘制平均浮力频率和平均势能随高度变化的图像
|
||
|
||
参数:
|
||
mean_ktemp_Nz (np.ndarray): 平均浮力频率数据
|
||
mean_ktemp_Ptz (np.ndarray): 平均势能数据
|
||
heights (np.ndarray): 高度数据数组
|
||
"""
|
||
# 绘制平均浮力频率(mean_ktemp_Nz)随高度变化的图像
|
||
plt.clf()
|
||
plt.figure(figsize=(10, 6))
|
||
plt.plot(mean_ktemp_Nz, heights / 1000) # 高度单位换算为km,方便展示
|
||
plt.xlabel('平均浮力频率 (N_z)')
|
||
plt.ylabel('高度(km)')
|
||
# plt.gca().invert_yaxis() # 使高度坐标轴从上到下递增,符合常规习惯
|
||
# plt.show()
|
||
|
||
|
||
def plot_results_mean_ktemp_Ptz(mean_ktemp_Ptz, heights):
|
||
"""
|
||
|
||
# 绘制平均势能(mean_ktemp_Ptz)随高度变化的图像
|
||
"""
|
||
# clean the plot
|
||
plt.clf()
|
||
plt.figure(figsize=(10, 6))
|
||
plt.plot(mean_ktemp_Ptz, heights / 1000) # 高度单位换算为km,方便展示
|
||
plt.xlabel('平均势能 (PT_z)')
|
||
plt.ylabel('高度(km)')
|
||
# plt.gca().invert_yaxis() # 使高度坐标轴从上到下递增,符合常规习惯
|
||
# plt.show()
|
||
|
||
|
||
class CosmicGravitywPlot:
|
||
|
||
def __init__(self, year, day, lat_range):
|
||
BASE_PATH_COSMIC = DATA_BASEPATH.cosmic
|
||
|
||
base_folder_path = f"./{BASE_PATH_COSMIC}/{year}"
|
||
day_num = day
|
||
# 模块1调用
|
||
final_df = read_and_preprocess_data(base_folder_path, day_num)
|
||
# 模块2调用
|
||
latitude_filtered_df, altitude_temperature_mean = filter_and_grid_data(
|
||
final_df, lat_range)
|
||
# 模块3调用
|
||
merged_df = calculate_wn0_and_perturbation(
|
||
latitude_filtered_df, altitude_temperature_mean)
|
||
# 模块4调用
|
||
fit_results, residuals, background_temperatures = wave_fitting_and_filtering(
|
||
merged_df)
|
||
# 模块5调用
|
||
result = bandpass_filtering(residuals)
|
||
# 创建从1到80km的高度列表(按照代码中原本逻辑转换为对应单位的数组)
|
||
heights = np.linspace(0, 60000, 3000)
|
||
# 模块6调用,计算势能相关数据并获取平均浮力频率和平均势能
|
||
mean_ktemp_Nz, mean_ktemp_Ptz = calculate_potential_energy(
|
||
background_temperatures, result, heights)
|
||
# print("平均浮力频率(mean_ktemp_Nz):", mean_ktemp_Nz)
|
||
# print("平均势能(mean_ktemp_Ptz):", mean_ktemp_Ptz)
|
||
self.mean_ktemp_Nz = mean_ktemp_Nz
|
||
self.mean_ktemp_Ptz = mean_ktemp_Ptz
|
||
self.heights = heights
|
||
# 调用绘图模块函数进行绘图
|
||
|
||
def plot_results_mean_ktemp_Nz(self):
|
||
plot_results_mean_ktemp_Nz(self.mean_ktemp_Nz, self.heights)
|
||
|
||
def plot_results_mean_ktemp_Ptz(self):
|
||
plot_results_mean_ktemp_Ptz(self.mean_ktemp_Ptz, self.heights)
|