feat: cosmic gw multiday
This commit is contained in:
parent
010f89c7d9
commit
7cf201ff8c
3
.gitignore
vendored
3
.gitignore
vendored
@ -17,4 +17,5 @@ build
|
||||
dist
|
||||
*.spec
|
||||
notebooks
|
||||
passcode
|
||||
passcode
|
||||
data
|
||||
@ -2,6 +2,7 @@ from io import BytesIO
|
||||
from quart import Blueprint, request, send_file
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from modules.cosmic.gravityw_multiday import GravityMultidayPlot
|
||||
from modules.cosmic.gravityw_perday import CosmicGravitywPlot
|
||||
from modules.cosmic.planetw_daily import cosmic_planetw_daily_plot
|
||||
from quart.utils import run_sync
|
||||
@ -47,3 +48,30 @@ async def single_render():
|
||||
buf.seek(0)
|
||||
|
||||
return await send_file(buf, mimetype="image/png")
|
||||
|
||||
|
||||
@cosmic_module.route("/render/gravity_wave/multiday")
|
||||
async def multiday_render():
|
||||
year = request.args.get("year", 2008)
|
||||
start_day = request.args.get("start_day", 1)
|
||||
end_day = request.args.get("end_day", 204)
|
||||
mode = request.args.get("mode", "位温分布")
|
||||
|
||||
p: GravityMultidayPlot = await run_sync(GravityMultidayPlot)(year=int(year),
|
||||
day_range=(start_day, end_day))
|
||||
if mode == "布伦特-维萨拉频率分布":
|
||||
await run_sync(p.plot_heatmap_tempNz)()
|
||||
elif mode == "位温分布":
|
||||
await run_sync(p.plot_heatmap_tempPtz)()
|
||||
elif mode == "每月浮力频率变化趋势":
|
||||
await run_sync(p.plot_floatage_trend)()
|
||||
elif mode == "每月平均重力势能的折线图":
|
||||
await run_sync(p.plot_monthly_energy)()
|
||||
else:
|
||||
raise ValueError("Invalid mode")
|
||||
|
||||
buf = BytesIO()
|
||||
plt.savefig(buf, format="png")
|
||||
buf.seek(0)
|
||||
|
||||
return await send_file(buf, mimetype="image/png")
|
||||
|
||||
@ -1,6 +1,3 @@
|
||||
# 这里全是重力波相关的
|
||||
# 原始文件名 :cosmic重力波多天.py
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@ -9,297 +6,58 @@ from scipy.optimize import curve_fit
|
||||
import netCDF4 as nc
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import matplotlib.font_manager as fm
|
||||
|
||||
from CONSTANT import DATA_BASEPATH
|
||||
from modules.cosmic.gravityw_multiday_process import process_single_file
|
||||
|
||||
DAY_RANGE = (0, 204)
|
||||
|
||||
# 设置支持中文的字体
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体为微软雅黑
|
||||
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
|
||||
fm.fontManager.addfont("./SimHei.ttf")
|
||||
plt.rcParams['font.sans-serif'] = ['Simhei'] # 设置字体为微软雅黑
|
||||
|
||||
# 定义处理单个文件的函数
|
||||
# 主循环,处理1到365个文件
|
||||
|
||||
|
||||
def process_single_file(base_folder_path, i):
|
||||
# 构建当前文件夹的路径
|
||||
folder_name = f"atmPrf_repro2021_2008_00{i}" if i < 10 else f"atmPrf_repro2021_2008_0{i}"
|
||||
folder_path = os.path.join(base_folder_path, folder_name)
|
||||
# 检查文件夹是否存在
|
||||
if os.path.exists(folder_path):
|
||||
dfs = []
|
||||
# 遍历文件夹中的文件
|
||||
for file_name in os.listdir(folder_path):
|
||||
if file_name.endswith('.0390_nc'):
|
||||
finfo = os.path.join(folder_path, file_name)
|
||||
print(f"正在处理文件: {finfo}")
|
||||
try:
|
||||
dataset = nc.Dataset(finfo, 'r')
|
||||
# 提取变量数据
|
||||
temp = dataset.variables['Temp'][:]
|
||||
altitude = dataset.variables['MSL_alt'][:]
|
||||
lat = dataset.variables['Lat'][:]
|
||||
lon = dataset.variables['Lon'][:]
|
||||
# 创建DataFrame
|
||||
df = pd.DataFrame({
|
||||
'Longitude': lon,
|
||||
'Latitude': lat,
|
||||
'Altitude': altitude,
|
||||
'Temperature': temp
|
||||
})
|
||||
dataset.close()
|
||||
# 剔除高度大于60的行
|
||||
df = df[df['Altitude'] <= 60]
|
||||
# 对每个文件的数据进行插值
|
||||
alt_interp = np.linspace(
|
||||
df['Altitude'].min(), df['Altitude'].max(), 3000)
|
||||
f_alt = interp1d(
|
||||
df['Altitude'], df['Altitude'], kind='linear', fill_value="extrapolate")
|
||||
f_lon = interp1d(
|
||||
df['Altitude'], df['Longitude'], kind='linear', fill_value="extrapolate")
|
||||
f_lat = interp1d(
|
||||
df['Altitude'], df['Latitude'], kind='linear', fill_value="extrapolate")
|
||||
f_temp = interp1d(
|
||||
df['Altitude'], df['Temperature'], kind='linear', fill_value="extrapolate")
|
||||
# 计算插值结果
|
||||
interpolated_alt = f_alt(alt_interp)
|
||||
interpolated_lon = f_lon(alt_interp)
|
||||
interpolated_lat = f_lat(alt_interp)
|
||||
interpolated_temp = f_temp(alt_interp)
|
||||
# 创建插值后的DataFrame
|
||||
interpolated_df = pd.DataFrame({
|
||||
'Altitude': interpolated_alt,
|
||||
'Longitude': interpolated_lon,
|
||||
'Latitude': interpolated_lat,
|
||||
'Temperature': interpolated_temp
|
||||
})
|
||||
# 将插值后的DataFrame添加到列表中
|
||||
dfs.append(interpolated_df)
|
||||
except Exception as e:
|
||||
print(f"处理文件 {finfo} 时出错: {e}")
|
||||
# 按行拼接所有插值后的DataFrame
|
||||
final_df = pd.concat(dfs, axis=0, ignore_index=True)
|
||||
# 获取 DataFrame 的长度
|
||||
num_rows = len(final_df)
|
||||
# 生成一个每3000个数从0到2999的序列并重复
|
||||
altitude_values = np.tile(
|
||||
np.arange(3000), num_rows // 3000 + 1)[:num_rows]
|
||||
# 将生成的值赋给 DataFrame 的 'Altitude' 列
|
||||
final_df['Altitude'] = altitude_values
|
||||
# 摄氏度换算开尔文
|
||||
final_df['Temperature'] = final_df['Temperature'] + 273.15
|
||||
def get_multiday_data(year=2008, day_range=DAY_RANGE):
|
||||
base_folder_path = f"{DATA_BASEPATH.cosmic}/{year}"
|
||||
all_mean_ktemp_Nz = []
|
||||
all_mean_ktemp_Ptz = []
|
||||
day_begin, day_end = day_range
|
||||
for file_index in range(day_begin, day_end):
|
||||
try:
|
||||
mean_ktemp_Nz, mean_ktemp_Ptz = process_single_file(
|
||||
base_folder_path, file_index)
|
||||
if mean_ktemp_Nz is not None and mean_ktemp_Ptz is not None:
|
||||
all_mean_ktemp_Nz.append(mean_ktemp_Nz)
|
||||
all_mean_ktemp_Ptz.append(mean_ktemp_Ptz)
|
||||
except ValueError as e:
|
||||
print(
|
||||
f"Error processing file index {file_index}: {e}, skipping this file.")
|
||||
continue
|
||||
|
||||
# 筛选出纬度在30到40度之间的数据
|
||||
latitude_filtered_df = final_df[(
|
||||
final_df['Latitude'] >= 30) & (final_df['Latitude'] <= 40)]
|
||||
|
||||
# 划分经度网格,20°的网格
|
||||
lon_min, lon_max = latitude_filtered_df['Longitude'].min(
|
||||
), latitude_filtered_df['Longitude'].max()
|
||||
lon_bins = np.arange(lon_min, lon_max + 20, 20) # 创建经度网格边界
|
||||
# 将数据分配到网格中
|
||||
latitude_filtered_df['Longitude_Grid'] = np.digitize(
|
||||
latitude_filtered_df['Longitude'], lon_bins) - 1
|
||||
|
||||
# 对相同高度的温度取均值,忽略NaN
|
||||
altitude_temperature_mean = latitude_filtered_df.groupby(
|
||||
'Altitude')['Temperature'].mean().reset_index()
|
||||
# 重命名列,使其更具可读性
|
||||
altitude_temperature_mean.columns = ['Altitude', 'Mean_Temperature']
|
||||
|
||||
# 定义高度的范围(这里从0到最短段)
|
||||
altitude_range = range(0, 3000)
|
||||
all_heights_mean_temperature = [] # 用于存储所有高度下的温度均值结果
|
||||
for altitude in altitude_range:
|
||||
# 筛选出当前高度的所有数据
|
||||
altitude_df = latitude_filtered_df[latitude_filtered_df['Altitude'] == altitude]
|
||||
# 对Longitude_Grid同一区间的温度取均值
|
||||
temperature_mean_by_grid = altitude_df.groupby(
|
||||
'Longitude_Grid')['Temperature'].mean().reset_index()
|
||||
# 重命名列,使其更具可读性
|
||||
temperature_mean_by_grid.columns = [
|
||||
'Longitude_Grid', 'Mean_Temperature']
|
||||
# 添加高度信息列,方便后续区分不同高度的结果
|
||||
temperature_mean_by_grid['Altitude'] = altitude
|
||||
# 将当前高度的结果添加到列表中
|
||||
all_heights_mean_temperature.append(temperature_mean_by_grid)
|
||||
# 将所有高度的结果合并为一个DataFrame
|
||||
combined_mean_temperature_df = pd.concat(
|
||||
all_heights_mean_temperature, ignore_index=True)
|
||||
|
||||
# 基于Altitude列合并两个DataFrame,只保留能匹配上的行
|
||||
merged_df = pd.merge(combined_mean_temperature_df,
|
||||
altitude_temperature_mean, on='Altitude', how='inner')
|
||||
# 计算差值(减去wn0的扰动)
|
||||
merged_df['Temperature_Difference'] = merged_df['Mean_Temperature_x'] - \
|
||||
merged_df['Mean_Temperature_y']
|
||||
|
||||
# 按Altitude分组
|
||||
grouped = merged_df.groupby('Altitude')
|
||||
|
||||
def single_harmonic(x, A, phi):
|
||||
return A * np.sin(2 * np.pi / (18 / k) * x + phi)
|
||||
# 初始化存储每个高度的最佳拟合参数、拟合曲线、残差值以及背景温度的字典
|
||||
fit_results = {}
|
||||
fitted_curves = {}
|
||||
residuals = {}
|
||||
background_temperatures = {}
|
||||
for altitude, group in grouped:
|
||||
y_data = group['Temperature_Difference'].values
|
||||
x_data = np.arange(len(y_data))
|
||||
wn0_data = group['Mean_Temperature_y'].values # 获取同一高度下的wn0数据
|
||||
# 检查Temperature_Difference列是否全部为NaN
|
||||
if np.all(np.isnan(y_data)):
|
||||
fit_results[altitude] = {
|
||||
'A': [np.nan] * 5, 'phi': [np.nan] * 5}
|
||||
fitted_curves[altitude] = [np.nan * x_data] * 5
|
||||
residuals[altitude] = np.nan * x_data
|
||||
background_temperatures[altitude] = np.nan * x_data
|
||||
else:
|
||||
# 替换NaN值为非NaN值的均值
|
||||
y_data = np.where(np.isnan(y_data), np.nanmean(y_data), y_data)
|
||||
# 初始化存储WN参数和曲线的列表
|
||||
wn_params = []
|
||||
wn_curves = []
|
||||
# 计算wn0(使用Mean_Temperature_y列数据)
|
||||
wn0 = wn0_data
|
||||
|
||||
# 对WN1至WN5进行拟合
|
||||
for k in range(1, 6):
|
||||
# 更新单谐波函数中的k值
|
||||
def harmonic_func(
|
||||
x, A, phi): return single_harmonic(x, A, phi)
|
||||
# 使用curve_fit进行拟合
|
||||
popt, pcov = curve_fit(harmonic_func, x_data, y_data, p0=[
|
||||
np.nanmax(y_data) - np.nanmin(y_data), 0])
|
||||
A_fit, phi_fit = popt
|
||||
# 存储拟合结果
|
||||
wn_params.append({'A': A_fit, 'phi': phi_fit})
|
||||
# 使用拟合参数生成拟合曲线
|
||||
WN = harmonic_func(x_data, A_fit, phi_fit)
|
||||
wn_curves.append(WN)
|
||||
# 计算残差值
|
||||
y_data = y_data - WN # 使用残差值作为下一次拟合的y_data
|
||||
# 存储结果
|
||||
fit_results[altitude] = wn_params
|
||||
fitted_curves[altitude] = wn_curves
|
||||
residuals[altitude] = y_data
|
||||
# 计算同一高度下的背景温度(wn0 + wn1 + wn2 + wn3 + wn4 + wn5)
|
||||
wn_sum = np.sum([wn0] + wn_curves, axis=0)
|
||||
background_temperatures[altitude] = wn_sum
|
||||
|
||||
# 将每个字典转换成一个 DataFrame
|
||||
df = pd.DataFrame(residuals)
|
||||
# 使用前向填充(用上一个有效值填充 NaN)
|
||||
df.ffill(axis=1, inplace=True)
|
||||
# 初始化一个新的字典来保存处理结果
|
||||
result = {}
|
||||
# 定义滤波范围
|
||||
lambda_low = 2 # 2 km
|
||||
lambda_high = 15 # 15 km
|
||||
f_low = 2 * np.pi / lambda_high
|
||||
f_high = 2 * np.pi / lambda_low
|
||||
# 循环处理df的每一行(每个高度)
|
||||
for idx, residuals_array in df.iterrows():
|
||||
# 提取有效值
|
||||
valid_values = np.ma.masked_array(
|
||||
residuals_array, np.isnan(residuals_array))
|
||||
compressed_values = valid_values.compressed() # 去除NaN值后的数组
|
||||
N = len(compressed_values) # 有效值的数量
|
||||
# 如果有效值为空(即所有值都是NaN),则将结果设置为NaN
|
||||
if N == 0:
|
||||
result[idx] = np.full_like(residuals_array, np.nan)
|
||||
else:
|
||||
# 时间序列和频率
|
||||
dt = 0.02 # 假设的时间间隔
|
||||
n = np.arange(N)
|
||||
f = n / (N * dt)
|
||||
# 傅里叶变换
|
||||
y = np.fft.fft(compressed_values)
|
||||
# 频率滤波
|
||||
yy = y.copy()
|
||||
freq_filter = (f >= f_low) & (f <= f_high)
|
||||
yy[~freq_filter] = 0
|
||||
# 逆傅里叶变换
|
||||
perturbation_after = np.real(np.fft.ifft(yy))
|
||||
# 将处理结果插回到result字典中
|
||||
result[idx] = perturbation_after
|
||||
|
||||
# 处理背景温度和扰动温度数据格式
|
||||
heights = list(background_temperatures.keys())
|
||||
data_length = len(next(iter(background_temperatures.values())))
|
||||
background_matrix = np.zeros((data_length, len(heights)))
|
||||
for idx, height in enumerate(heights):
|
||||
background_matrix[:, idx] = background_temperatures[height]
|
||||
|
||||
heights = list(result.keys())
|
||||
data_length = len(next(iter(result.values())))
|
||||
perturbation_matrix = np.zeros((data_length, len(heights)))
|
||||
for idx, height in enumerate(heights):
|
||||
perturbation_matrix[:, idx] = result[height]
|
||||
perturbation_matrix = perturbation_matrix.T
|
||||
|
||||
# 计算 Brunt-Väisälä 频率和势能
|
||||
heights_for_calc = np.linspace(0, 60, 3000) * 1000
|
||||
|
||||
def brunt_vaisala_frequency(g, BT_z, c_p, heights):
|
||||
# 计算位温随高度的变化率
|
||||
dBT_z_dz = np.gradient(BT_z, heights)
|
||||
# 计算 Brunt-Väisälä 频率,根号内取绝对值
|
||||
frequency_squared = (g / BT_z) * ((g / c_p) + dBT_z_dz)
|
||||
frequency = np.sqrt(np.abs(frequency_squared))
|
||||
return frequency
|
||||
|
||||
# 计算势能
|
||||
def calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z):
|
||||
# 计算势能
|
||||
return 0.5 * ((g / N_z) ** 2) * ((PT_z / BT_z) ** 2)
|
||||
g = 9.81 # 重力加速度
|
||||
c_p = 1004.5 # 比热容
|
||||
N_z_matrix = []
|
||||
PT_z_matrix = []
|
||||
for i in range(background_matrix.shape[0]):
|
||||
BT_z = np.array(background_matrix[i])
|
||||
PT_z = np.array(perturbation_matrix[i])
|
||||
N_z = brunt_vaisala_frequency(g, BT_z, c_p, heights_for_calc)
|
||||
PW = calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z)
|
||||
N_z_matrix.append(N_z)
|
||||
PT_z_matrix.append(PW)
|
||||
ktemp_Nz = np.vstack(N_z_matrix)
|
||||
ktemp_Ptz = np.vstack(PT_z_matrix)
|
||||
mean_ktemp_Nz = np.mean(ktemp_Nz, axis=0)
|
||||
mean_ktemp_Ptz = np.mean(ktemp_Ptz, axis=0)
|
||||
|
||||
return mean_ktemp_Nz, mean_ktemp_Ptz
|
||||
else:
|
||||
print(f"文件夹 {folder_path} 不存在。")
|
||||
return None, None
|
||||
|
||||
|
||||
# 主循环,处理1到3个文件
|
||||
base_folder_path = r"./data/cosmic/2008"
|
||||
all_mean_ktemp_Nz = []
|
||||
all_mean_ktemp_Ptz = []
|
||||
for file_index in range(1, 365):
|
||||
mean_ktemp_Nz, mean_ktemp_Ptz = process_single_file(
|
||||
base_folder_path, file_index)
|
||||
if mean_ktemp_Nz is not None and mean_ktemp_Ptz is not None:
|
||||
all_mean_ktemp_Nz.append(mean_ktemp_Nz)
|
||||
all_mean_ktemp_Ptz.append(mean_ktemp_Ptz)
|
||||
# 转换每个数组为二维形状
|
||||
final_mean_ktemp_Nz = np.vstack([arr.reshape(1, -1)
|
||||
for arr in all_mean_ktemp_Nz])
|
||||
final_mean_ktemp_Ptz = np.vstack(
|
||||
[arr.reshape(1, -1) for arr in all_mean_ktemp_Ptz])
|
||||
# 使用条件索引替换大于50的值为NaN
|
||||
final_mean_ktemp_Ptz[final_mean_ktemp_Ptz > 50] = np.nan
|
||||
# heights 为每个高度的值
|
||||
heights = np.linspace(0, 60, 3000)
|
||||
df_final_mean_ktemp_Ptz = pd.DataFrame(final_mean_ktemp_Ptz)
|
||||
df_final_mean_ktemp_Nz = pd.DataFrame(final_mean_ktemp_Nz)
|
||||
# -------------------------------------------------绘制年统计图------------------------------------
|
||||
# -----------绘制浮力频率年统计图-----------------------
|
||||
data = df_final_mean_ktemp_Nz.T
|
||||
# 对每个元素进行平方(计算N2)
|
||||
data = data ** 2
|
||||
data = data*10000 # (绘图好看)
|
||||
# 将大于 10 的值替换为 NaN(个别异常值)
|
||||
data[data > 10] = np.nan
|
||||
# 转换每个数组为二维形状
|
||||
final_mean_ktemp_Nz = np.vstack([arr.reshape(1, -1)
|
||||
for arr in all_mean_ktemp_Nz])
|
||||
final_mean_ktemp_Ptz = np.vstack(
|
||||
[arr.reshape(1, -1) for arr in all_mean_ktemp_Ptz])
|
||||
# 使用条件索引替换大于50的值为NaN
|
||||
final_mean_ktemp_Ptz[final_mean_ktemp_Ptz > 50] = np.nan
|
||||
# heights 为每个高度的值
|
||||
heights = np.linspace(0, 60, 3000)
|
||||
df_final_mean_ktemp_Ptz = pd.DataFrame(final_mean_ktemp_Ptz)
|
||||
df_final_mean_ktemp_Nz = pd.DataFrame(final_mean_ktemp_Nz)
|
||||
# -------------------------------------------------绘制年统计图------------------------------------
|
||||
# -----------绘制浮力频率年统计图-----------------------
|
||||
data = df_final_mean_ktemp_Nz.T
|
||||
# 对每个元素进行平方(计算N2)
|
||||
data = data ** 2
|
||||
data = data*10000 # (绘图好看)
|
||||
# 将大于 10 的值替换为 NaN(个别异常值)
|
||||
data[data > 10] = np.nan
|
||||
return df_final_mean_ktemp_Nz, df_final_mean_ktemp_Ptz, data, heights
|
||||
# 绘制热力图的函数
|
||||
|
||||
|
||||
@ -324,218 +82,222 @@ def plot_heatmap(data, heights, title):
|
||||
plt.show()
|
||||
|
||||
|
||||
# 调用函数绘制热力图
|
||||
plot_heatmap(data, heights, 'Heatmap of final_mean_ktemp_Nz(10^(-4))')
|
||||
# -----------------------------------------------------------------------------
|
||||
# -------------绘制重力势能年统计图------------------------------------------------
|
||||
data1 = df_final_mean_ktemp_Ptz.T
|
||||
# 绘制热力图的函数
|
||||
class GravityMultidayPlot:
|
||||
def __init__(self, year, day_range):
|
||||
|
||||
self.year = year
|
||||
df_final_mean_ktemp_Nz, df_final_mean_ktemp_Ptz, data, heights = get_multiday_data(
|
||||
year, day_range)
|
||||
self.df_final_mean_ktemp_Nz = df_final_mean_ktemp_Nz
|
||||
self.df_final_mean_ktemp_Ptz = df_final_mean_ktemp_Ptz
|
||||
self.data = data
|
||||
self.data1 = df_final_mean_ktemp_Ptz.T
|
||||
self.heights = heights
|
||||
|
||||
def plot_heatmap(data, heights, title):
|
||||
plt.figure(figsize=(10, 8))
|
||||
# 绘制热力图,数据中的行代表高度,列代表天数
|
||||
sns.heatmap(data, cmap='coolwarm', xticklabels=1,
|
||||
yticklabels=50, cbar_kws={'label': 'Value'})
|
||||
plt.xlabel('Day')
|
||||
plt.ylabel('Height (km)')
|
||||
plt.title(title)
|
||||
# 设置x轴的刻度,使其每30天显示一个标签
|
||||
num_days = data.shape[1]
|
||||
x_tick_positions = np.arange(0, num_days, 30)
|
||||
x_tick_labels = np.arange(0, num_days, 30)
|
||||
plt.xticks(x_tick_positions, x_tick_labels)
|
||||
# 设置y轴的刻度,使其显示对应的高度
|
||||
plt.yticks(np.linspace(
|
||||
0, data.shape[0] - 1, 6), np.round(np.linspace(heights[0], heights[-1], 6), 2))
|
||||
# 反转 y 轴,使 0 在底部
|
||||
plt.gca().invert_yaxis()
|
||||
plt.show()
|
||||
def plot_heatmap_tempNz(self):
|
||||
# 调用函数绘制热力图
|
||||
data = self.data
|
||||
plot_heatmap(data, self.heights,
|
||||
'Heatmap of final_mean_ktemp_Nz(10^(-4))')
|
||||
|
||||
def plot_heatmap_tempPtz(self):
|
||||
# -------------绘制重力势能年统计图------------------------------------------------
|
||||
data = self.df_final_mean_ktemp_Ptz.T
|
||||
plot_heatmap(data, self.heights,
|
||||
'Heatmap of final_mean_ktemp_Ptz(J/kg)')
|
||||
|
||||
# 调用函数绘制热力图
|
||||
plot_heatmap(data1, heights, 'Heatmap of final_mean_ktemp_Ptz(J/kg)')
|
||||
# ------------------------绘制月统计图---------------------------------------------------------------------------------
|
||||
# ----------绘制浮力频率月统计图-------------------------------------------------
|
||||
# 获取总列数
|
||||
num_columns = data.shape[1]
|
||||
# 按30列分组计算均值
|
||||
averaged_df = []
|
||||
# 逐步处理每30列
|
||||
for i in range(0, num_columns, 30):
|
||||
# 获取当前范围内的列,并计算均值
|
||||
subset = data.iloc[:, i:i+30] # 获取第i到i+29列
|
||||
mean_values = subset.mean(axis=1) # 对每行计算均值
|
||||
averaged_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_df = pd.DataFrame(averaged_df).T
|
||||
# 1. 每3000行取一个均值
|
||||
# 获取总行数
|
||||
num_rows = averaged_df.shape[0]
|
||||
# 创建一个新的列表来存储每3000行的均值
|
||||
averaged_by_rows_df = []
|
||||
# 逐步处理每3000行
|
||||
for i in range(0, num_rows, 3000):
|
||||
# 获取当前范围内的行
|
||||
subset = averaged_df.iloc[i:i+3000, :] # 获取第i到i+99行
|
||||
mean_values = subset.mean(axis=0) # 对每列计算均值
|
||||
averaged_by_rows_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_by_rows_df = pd.DataFrame(averaged_by_rows_df)
|
||||
# 绘制折线图
|
||||
plt.figure(figsize=(10, 6)) # 设置图形的大小
|
||||
plt.plot(averaged_by_rows_df.columns, averaged_by_rows_df.mean(
|
||||
axis=0), marker='o', color='b', label='平均值')
|
||||
# 添加标题和标签
|
||||
plt.title('每月平均N^2的折线图')
|
||||
plt.xlabel('月份')
|
||||
plt.ylabel('N^2(10^-4)')
|
||||
plt.legend()
|
||||
# 显示图形
|
||||
plt.grid(True)
|
||||
plt.xticks(rotation=45) # 让x轴标签(月份)倾斜,以便更清晰显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
# ------------重力势能的月统计-----------------------------------
|
||||
# 获取总列数
|
||||
num_columns = data1.shape[1]
|
||||
# 按30列分组计算均值
|
||||
averaged_df = []
|
||||
# 逐步处理每30列
|
||||
for i in range(0, num_columns, 30):
|
||||
# 获取当前范围内的列,并计算均值
|
||||
subset = data1.iloc[:, i:i+30] # 获取第i到i+29列
|
||||
mean_values = subset.mean(axis=1) # 对每行计算均值
|
||||
averaged_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_df = pd.DataFrame(averaged_df).T
|
||||
# 1. 每3000行取一个均值
|
||||
# 获取总行数
|
||||
num_rows = averaged_df.shape[0]
|
||||
# 创建一个新的列表来存储每3000行的均值
|
||||
averaged_by_rows_df = []
|
||||
# 逐步处理每3000行
|
||||
for i in range(0, num_rows, 3000):
|
||||
# 获取当前范围内的行
|
||||
subset = averaged_df.iloc[i:i+3000, :] # 获取第i到i+99行
|
||||
mean_values = subset.mean(axis=0) # 对每列计算均值
|
||||
averaged_by_rows_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_by_rows_df = pd.DataFrame(averaged_by_rows_df)
|
||||
# 绘制折线图
|
||||
plt.figure(figsize=(10, 6)) # 设置图形的大小
|
||||
plt.plot(averaged_by_rows_df.columns, averaged_by_rows_df.mean(
|
||||
axis=0), marker='o', color='b', label='平均值')
|
||||
# 添加标题和标签
|
||||
plt.title('每月平均重力势能的折线图')
|
||||
plt.xlabel('月份')
|
||||
plt.ylabel('重力势能(J/Kg)')
|
||||
plt.legend()
|
||||
# 显示图形
|
||||
plt.grid(True)
|
||||
plt.xticks(rotation=45) # 让x轴标签(月份)倾斜,以便更清晰显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
def plot_monthly_tempNz(self):
|
||||
# ------------------------绘制月统计图---------------------------------------------------------------------------------
|
||||
# ----------绘制浮力频率月统计图-------------------------------------------------
|
||||
# 获取总列数
|
||||
data = self.data
|
||||
num_columns = data.shape[1]
|
||||
# 按30列分组计算均值
|
||||
averaged_df = []
|
||||
# 逐步处理每30列
|
||||
for i in range(0, num_columns, 30):
|
||||
# 获取当前范围内的列,并计算均值
|
||||
subset = data.iloc[:, i:i+30] # 获取第i到i+29列
|
||||
mean_values = subset.mean(axis=1) # 对每行计算均值
|
||||
averaged_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_df = pd.DataFrame(averaged_df).T
|
||||
# 1. 每3000行取一个均值
|
||||
# 获取总行数
|
||||
num_rows = averaged_df.shape[0]
|
||||
# 创建一个新的列表来存储每3000行的均值
|
||||
averaged_by_rows_df = []
|
||||
# 逐步处理每3000行
|
||||
for i in range(0, num_rows, 3000):
|
||||
# 获取当前范围内的行
|
||||
subset = averaged_df.iloc[i:i+3000, :] # 获取第i到i+99行
|
||||
mean_values = subset.mean(axis=0) # 对每列计算均值
|
||||
averaged_by_rows_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_by_rows_df = pd.DataFrame(averaged_by_rows_df)
|
||||
# 绘制折线图
|
||||
plt.figure(figsize=(10, 6)) # 设置图形的大小
|
||||
plt.plot(averaged_by_rows_df.columns, averaged_by_rows_df.mean(
|
||||
axis=0), marker='o', color='b', label='平均值')
|
||||
# 添加标题和标签
|
||||
plt.title('每月平均N^2的折线图')
|
||||
plt.xlabel('月份')
|
||||
plt.ylabel('N^2(10^-4)')
|
||||
plt.legend()
|
||||
# 显示图形
|
||||
plt.grid(True)
|
||||
plt.xticks(rotation=45) # 让x轴标签(月份)倾斜,以便更清晰显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
def plot_monthly_energy(self):
|
||||
data1 = self.data1
|
||||
|
||||
# 获取总列数
|
||||
total_columns = data.shape[1]
|
||||
# 用于存储每一组30列计算得到的均值列数据(最终会构成新的DataFrame)
|
||||
mean_columns = []
|
||||
# 分组序号,用于生成列名时区分不同的均值列,从1开始
|
||||
group_index = 1
|
||||
# 按照每30列一组进行划分(不滑动)
|
||||
for start_col in range(0, total_columns, 30):
|
||||
end_col = start_col + 30
|
||||
if end_col > total_columns:
|
||||
end_col = total_columns
|
||||
# 选取当前组的30列(如果不足30列,按实际剩余列数选取)
|
||||
group_data = data.iloc[:, start_col:end_col]
|
||||
# 按行对当前组的列数据求和
|
||||
sum_per_row = group_data.sum(axis=1)
|
||||
# 计算平均(每一组的平均,每行都有一个平均结果)
|
||||
mean_per_row = sum_per_row / (end_col - start_col)
|
||||
# 生成新的列名,格式为'Mean_分组序号',例如'Mean_1'、'Mean_2'等
|
||||
new_column_name = f'Mean_{group_index}'
|
||||
group_index += 1
|
||||
# 将当前组计算得到的均值列添加到列表中
|
||||
mean_columns.append(mean_per_row)
|
||||
# 将所有的均值列合并为一个新的DataFrame(列方向合并)
|
||||
new_mean_df = pd.concat(mean_columns, axis=1)
|
||||
# 按行对new_mean_df所有列的数据进行求和,得到一个Series,索引与new_mean_df的索引一致,每个元素是每行的总和
|
||||
row_sums = new_mean_df.sum(axis=1)
|
||||
# 计算所有行总和的均值
|
||||
mean_value = row_sums.mean()
|
||||
# 设置中文字体为黑体,解决中文显示问题(Windows系统下),如果是其他系统或者有其他字体需求可适当调整
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
# 解决负号显示问题
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
# 提取月份作为x轴标签(假设mean_value的索引就是月份信息)
|
||||
months = mean_value.index.tolist()
|
||||
# 提取均值数据作为y轴数据
|
||||
energy_values = mean_value.tolist()
|
||||
# 创建图形和坐标轴对象
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
# 绘制折线图
|
||||
ax.plot(months, energy_values, marker='o', linestyle='-', color='b')
|
||||
# 设置坐标轴标签和标题
|
||||
ax.set_xlabel('月份')
|
||||
ax.set_ylabel('平均浮力频率')
|
||||
ax.set_title('每月浮力频率变化趋势')
|
||||
# 设置x轴刻度,让其旋转一定角度以便更好地显示所有月份标签,避免重叠
|
||||
plt.xticks(rotation=45)
|
||||
# 显示网格线,增强图表可读性
|
||||
ax.grid(True)
|
||||
# 显示图形
|
||||
plt.show()
|
||||
# --------------------------------绘制重力势能月统计图------------------------------
|
||||
# 获取总列数
|
||||
total_columns = data1.shape[1]
|
||||
# 用于存储每一组30列计算得到的均值列数据(最终会构成新的DataFrame)
|
||||
mean_columns = []
|
||||
# 分组序号,用于生成列名时区分不同的均值列,从1开始
|
||||
group_index = 1
|
||||
# 按照每30列一组进行划分(不滑动)
|
||||
for start_col in range(0, total_columns, 30):
|
||||
end_col = start_col + 30
|
||||
if end_col > total_columns:
|
||||
end_col = total_columns
|
||||
# 选取当前组的30列(如果不足30列,按实际剩余列数选取)
|
||||
group_data = data1.iloc[:, start_col:end_col]
|
||||
# 按行对当前组的列数据求和
|
||||
sum_per_row = group_data.sum(axis=1)
|
||||
# 计算平均(每一组的平均,每行都有一个平均结果)
|
||||
mean_per_row = sum_per_row / (end_col - start_col)
|
||||
# 生成新的列名,格式为'Mean_分组序号',例如'Mean_1'、'Mean_2'等
|
||||
new_column_name = f'Mean_{group_index}'
|
||||
group_index += 1
|
||||
# 将当前组计算得到的均值列添加到列表中
|
||||
mean_columns.append(mean_per_row)
|
||||
# 将所有的均值列合并为一个新的DataFrame(列方向合并)
|
||||
new_mean_df = pd.concat(mean_columns, axis=1)
|
||||
# 按行对new_mean_df所有列的数据进行求和,得到一个Series,索引与new_mean_df的索引一致,每个元素是每行的总和
|
||||
row_sums = new_mean_df.sum(axis=1)
|
||||
# 计算所有行总和的均值
|
||||
mean_value = row_sums.mean()
|
||||
# 设置中文字体为黑体,解决中文显示问题(Windows系统下),如果是其他系统或者有其他字体需求可适当调整
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
# 解决负号显示问题
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
# 提取月份作为x轴标签(假设mean_value的索引就是月份信息)
|
||||
months = mean_value.index.tolist()
|
||||
# 提取均值数据作为y轴数据
|
||||
energy_values = mean_value.tolist()
|
||||
# 创建图形和坐标轴对象
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
# 绘制折线图
|
||||
ax.plot(months, energy_values, marker='o', linestyle='-', color='b')
|
||||
# 设置坐标轴标签和标题
|
||||
ax.set_xlabel('月份')
|
||||
ax.set_ylabel('平均浮力频率')
|
||||
ax.set_title('每月浮力频率变化趋势')
|
||||
# 设置x轴刻度,让其旋转一定角度以便更好地显示所有月份标签,避免重叠
|
||||
plt.xticks(rotation=45)
|
||||
# 显示网格线,增强图表可读性
|
||||
ax.grid(True)
|
||||
# 显示图形
|
||||
plt.show()
|
||||
# ------------重力势能的月统计-----------------------------------
|
||||
# 获取总列数
|
||||
num_columns = data1.shape[1]
|
||||
# 按30列分组计算均值
|
||||
averaged_df = []
|
||||
# 逐步处理每30列
|
||||
for i in range(0, num_columns, 30):
|
||||
# 获取当前范围内的列,并计算均值
|
||||
subset = data1.iloc[:, i:i+30] # 获取第i到i+29列
|
||||
mean_values = subset.mean(axis=1) # 对每行计算均值
|
||||
averaged_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_df = pd.DataFrame(averaged_df).T
|
||||
# 1. 每3000行取一个均值
|
||||
# 获取总行数
|
||||
num_rows = averaged_df.shape[0]
|
||||
# 创建一个新的列表来存储每3000行的均值
|
||||
averaged_by_rows_df = []
|
||||
# 逐步处理每3000行
|
||||
for i in range(0, num_rows, 3000):
|
||||
# 获取当前范围内的行
|
||||
subset = averaged_df.iloc[i:i+3000, :] # 获取第i到i+99行
|
||||
mean_values = subset.mean(axis=0) # 对每列计算均值
|
||||
averaged_by_rows_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_by_rows_df = pd.DataFrame(averaged_by_rows_df)
|
||||
# 绘制折线图
|
||||
plt.figure(figsize=(10, 6)) # 设置图形的大小
|
||||
plt.plot(averaged_by_rows_df.columns, averaged_by_rows_df.mean(
|
||||
axis=0), marker='o', color='b', label='平均值')
|
||||
# 添加标题和标签
|
||||
plt.title('每月平均重力势能的折线图')
|
||||
plt.xlabel('月份')
|
||||
plt.ylabel('重力势能(J/Kg)')
|
||||
plt.legend()
|
||||
# 显示图形
|
||||
plt.grid(True)
|
||||
plt.xticks(rotation=45) # 让x轴标签(月份)倾斜,以便更清晰显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
def plot_floatage_trend(self):
|
||||
data = self.data
|
||||
# 获取总列数
|
||||
total_columns = data.shape[1]
|
||||
# 用于存储每一组30列计算得到的均值列数据(最终会构成新的DataFrame)
|
||||
mean_columns = []
|
||||
# 分组序号,用于生成列名时区分不同的均值列,从1开始
|
||||
group_index = 1
|
||||
# 按照每30列一组进行划分(不滑动)
|
||||
for start_col in range(0, total_columns, 30):
|
||||
end_col = start_col + 30
|
||||
if end_col > total_columns:
|
||||
end_col = total_columns
|
||||
# 选取当前组的30列(如果不足30列,按实际剩余列数选取)
|
||||
group_data = data.iloc[:, start_col:end_col]
|
||||
# 按行对当前组的列数据求和
|
||||
sum_per_row = group_data.sum(axis=1)
|
||||
# 计算平均(每一组的平均,每行都有一个平均结果)
|
||||
mean_per_row = sum_per_row / (end_col - start_col)
|
||||
# 生成新的列名,格式为'Mean_分组序号',例如'Mean_1'、'Mean_2'等
|
||||
new_column_name = f'Mean_{group_index}'
|
||||
group_index += 1
|
||||
# 将当前组计算得到的均值列添加到列表中
|
||||
mean_columns.append(mean_per_row)
|
||||
# 将所有的均值列合并为一个新的DataFrame(列方向合并)
|
||||
new_mean_df = pd.concat(mean_columns, axis=1)
|
||||
# 按行对new_mean_df所有列的数据进行求和,得到一个Series,索引与new_mean_df的索引一致,每个元素是每行的总和
|
||||
row_sums = new_mean_df.sum(axis=1)
|
||||
# 计算所有行总和的均值
|
||||
mean_value = row_sums.mean()
|
||||
# 设置中文字体为黑体,解决中文显示问题(Windows系统下),如果是其他系统或者有其他字体需求可适当调整
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
# 解决负号显示问题
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
# 提取月份作为x轴标签(假设mean_value的索引就是月份信息)
|
||||
print(mean_value)
|
||||
months = mean_value.index.tolist()
|
||||
# 提取均值数据作为y轴数据
|
||||
energy_values = mean_value.tolist()
|
||||
# 创建图形和坐标轴对象
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
# 绘制折线图
|
||||
ax.plot(months, energy_values, marker='o', linestyle='-', color='b')
|
||||
# 设置坐标轴标签和标题
|
||||
ax.set_xlabel('月份')
|
||||
ax.set_ylabel('平均浮力频率')
|
||||
ax.set_title('每月浮力频率变化趋势')
|
||||
# 设置x轴刻度,让其旋转一定角度以便更好地显示所有月份标签,避免重叠
|
||||
plt.xticks(rotation=45)
|
||||
# 显示网格线,增强图表可读性
|
||||
ax.grid(True)
|
||||
# 显示图形
|
||||
plt.show()
|
||||
|
||||
def plot_floatage_trend(self):
|
||||
data1 = self.data1
|
||||
# --------------------------------绘制重力势能月统计图------------------------------
|
||||
# 获取总列数
|
||||
total_columns = data1.shape[1]
|
||||
# 用于存储每一组30列计算得到的均值列数据(最终会构成新的DataFrame)
|
||||
mean_columns = []
|
||||
# 分组序号,用于生成列名时区分不同的均值列,从1开始
|
||||
group_index = 1
|
||||
# 按照每30列一组进行划分(不滑动)
|
||||
for start_col in range(0, total_columns, 30):
|
||||
end_col = start_col + 30
|
||||
if end_col > total_columns:
|
||||
end_col = total_columns
|
||||
# 选取当前组的30列(如果不足30列,按实际剩余列数选取)
|
||||
group_data = data1.iloc[:, start_col:end_col]
|
||||
# 按行对当前组的列数据求和
|
||||
sum_per_row = group_data.sum(axis=1)
|
||||
# 计算平均(每一组的平均,每行都有一个平均结果)
|
||||
mean_per_row = sum_per_row / (end_col - start_col)
|
||||
# 生成新的列名,格式为'Mean_分组序号',例如'Mean_1'、'Mean_2'等
|
||||
new_column_name = f'Mean_{group_index}'
|
||||
group_index += 1
|
||||
# 将当前组计算得到的均值列添加到列表中
|
||||
mean_columns.append(mean_per_row)
|
||||
# 将所有的均值列合并为一个新的DataFrame(列方向合并)
|
||||
new_mean_df = pd.concat(mean_columns, axis=1)
|
||||
# 按行对new_mean_df所有列的数据进行求和,得到一个Series,索引与new_mean_df的索引一致,每个元素是每行的总和
|
||||
row_sums = new_mean_df.sum(axis=1)
|
||||
# 计算所有行总和的均值
|
||||
mean_value = row_sums.mean()
|
||||
# 设置中文字体为黑体,解决中文显示问题(Windows系统下),如果是其他系统或者有其他字体需求可适当调整
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
# 解决负号显示问题
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
# 提取月份作为x轴标签(假设mean_value的索引就是月份信息)
|
||||
months = mean_value.index.tolist()
|
||||
# 提取均值数据作为y轴数据
|
||||
energy_values = mean_value.tolist()
|
||||
# 创建图形和坐标轴对象
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
# 绘制折线图
|
||||
ax.plot(months, energy_values, marker='o', linestyle='-', color='b')
|
||||
# 设置坐标轴标签和标题
|
||||
ax.set_xlabel('月份')
|
||||
ax.set_ylabel('平均浮力频率')
|
||||
ax.set_title('每月浮力频率变化趋势')
|
||||
# 设置x轴刻度,让其旋转一定角度以便更好地显示所有月份标签,避免重叠
|
||||
plt.xticks(rotation=45)
|
||||
# 显示网格线,增强图表可读性
|
||||
ax.grid(True)
|
||||
# 显示图形
|
||||
plt.show()
|
||||
|
||||
285
modules/cosmic/gravityw_multiday_process.py
Normal file
285
modules/cosmic/gravityw_multiday_process.py
Normal file
@ -0,0 +1,285 @@
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.interpolate import interp1d
|
||||
from scipy.optimize import curve_fit
|
||||
import netCDF4 as nc
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
import matplotlib.font_manager as fm
|
||||
|
||||
|
||||
def process_single_file(base_folder_path, i):
|
||||
# 构建当前文件夹的路径
|
||||
if i < 10:
|
||||
folder_name = f"atmPrf_repro2021_2008_00{i}" # 一位数,前面加两个0
|
||||
elif i < 100:
|
||||
folder_name = f"atmPrf_repro2021_2008_0{i}" # 两位数,前面加一个0
|
||||
else:
|
||||
folder_name = f"atmPrf_repro2021_2008_{i}" # 三位数,不加0
|
||||
folder_path = os.path.join(base_folder_path, folder_name)
|
||||
|
||||
# i should be day
|
||||
cache_path_nz = f"{base_folder_path}/{folder_name}_mean_ktemp_Nz.npy"
|
||||
cache_path_ptz = f"{base_folder_path}/{folder_name}_mean_ktemp_Ptz.npy"
|
||||
if os.path.exists(cache_path_nz) and os.path.exists(cache_path_ptz):
|
||||
mean_ktemp_Nz = np.load(cache_path_nz)
|
||||
mean_ktemp_Ptz = np.load(cache_path_ptz)
|
||||
print(f"Loaded cache for {folder_name}")
|
||||
return mean_ktemp_Nz, mean_ktemp_Ptz
|
||||
|
||||
# 检查文件夹是否存在
|
||||
if os.path.exists(folder_path):
|
||||
dfs = []
|
||||
# 遍历文件夹中的文件
|
||||
for file_name in os.listdir(folder_path):
|
||||
if file_name.endswith('.0390_nc'):
|
||||
finfo = os.path.join(folder_path, file_name)
|
||||
# print(f"正在处理文件: {finfo}")
|
||||
try:
|
||||
dataset = nc.Dataset(finfo, 'r')
|
||||
# 提取变量数据
|
||||
temp = dataset.variables['Temp'][:]
|
||||
altitude = dataset.variables['MSL_alt'][:]
|
||||
lat = dataset.variables['Lat'][:]
|
||||
lon = dataset.variables['Lon'][:]
|
||||
# 创建DataFrame
|
||||
df = pd.DataFrame({
|
||||
'Longitude': lon,
|
||||
'Latitude': lat,
|
||||
'Altitude': altitude,
|
||||
'Temperature': temp
|
||||
})
|
||||
dataset.close()
|
||||
# 剔除高度大于60的行
|
||||
df = df[df['Altitude'] <= 60]
|
||||
# 对每个文件的数据进行插值
|
||||
alt_interp = np.linspace(
|
||||
df['Altitude'].min(), df['Altitude'].max(), 3000)
|
||||
f_alt = interp1d(
|
||||
df['Altitude'], df['Altitude'], kind='linear', fill_value="extrapolate")
|
||||
f_lon = interp1d(
|
||||
df['Altitude'], df['Longitude'], kind='linear', fill_value="extrapolate")
|
||||
f_lat = interp1d(
|
||||
df['Altitude'], df['Latitude'], kind='linear', fill_value="extrapolate")
|
||||
f_temp = interp1d(
|
||||
df['Altitude'], df['Temperature'], kind='linear', fill_value="extrapolate")
|
||||
# 计算插值结果
|
||||
interpolated_alt = f_alt(alt_interp)
|
||||
interpolated_lon = f_lon(alt_interp)
|
||||
interpolated_lat = f_lat(alt_interp)
|
||||
interpolated_temp = f_temp(alt_interp)
|
||||
# 创建插值后的DataFrame
|
||||
interpolated_df = pd.DataFrame({
|
||||
'Altitude': interpolated_alt,
|
||||
'Longitude': interpolated_lon,
|
||||
'Latitude': interpolated_lat,
|
||||
'Temperature': interpolated_temp
|
||||
})
|
||||
# 将插值后的DataFrame添加到列表中
|
||||
dfs.append(interpolated_df)
|
||||
except Exception as e:
|
||||
print(f"处理文件 {finfo} 时出错: {e}")
|
||||
# 按行拼接所有插值后的DataFrame
|
||||
final_df = pd.concat(dfs, axis=0, ignore_index=True)
|
||||
# 获取 DataFrame 的长度
|
||||
num_rows = len(final_df)
|
||||
# 生成一个每3000个数从0到2999的序列并重复
|
||||
altitude_values = np.tile(
|
||||
np.arange(3000), num_rows // 3000 + 1)[:num_rows]
|
||||
# 将生成的值赋给 DataFrame 的 'Altitude' 列
|
||||
final_df['Altitude'] = altitude_values
|
||||
# 摄氏度换算开尔文
|
||||
final_df['Temperature'] = final_df['Temperature'] + 273.15
|
||||
|
||||
# 筛选出纬度在30到40度之间的数据
|
||||
latitude_filtered_df = final_df[(
|
||||
final_df['Latitude'] >= 30) & (final_df['Latitude'] <= 40)]
|
||||
|
||||
# 划分经度网格,20°的网格
|
||||
lon_min, lon_max = latitude_filtered_df['Longitude'].min(
|
||||
), latitude_filtered_df['Longitude'].max()
|
||||
lon_bins = np.arange(lon_min, lon_max + 20, 20) # 创建经度网格边界
|
||||
# 将数据分配到网格中
|
||||
# latitude_filtered_df['Longitude_Grid'] = np.digitize(
|
||||
# latitude_filtered_df['Longitude'], lon_bins) - 1
|
||||
latitude_filtered_df.loc[:, 'Longitude_Grid'] = np.digitize(
|
||||
latitude_filtered_df['Longitude'], lon_bins) - 1
|
||||
|
||||
# 对相同高度的温度取均值,忽略NaN
|
||||
altitude_temperature_mean = latitude_filtered_df.groupby(
|
||||
'Altitude')['Temperature'].mean().reset_index()
|
||||
# 重命名列,使其更具可读性
|
||||
altitude_temperature_mean.columns = ['Altitude', 'Mean_Temperature']
|
||||
|
||||
# 定义高度的范围(这里从0到最短段)
|
||||
altitude_range = range(0, 3000)
|
||||
all_heights_mean_temperature = [] # 用于存储所有高度下的温度均值结果
|
||||
for altitude in altitude_range:
|
||||
# 筛选出当前高度的所有数据
|
||||
altitude_df = latitude_filtered_df[latitude_filtered_df['Altitude'] == altitude]
|
||||
# 对Longitude_Grid同一区间的温度取均值
|
||||
temperature_mean_by_grid = altitude_df.groupby(
|
||||
'Longitude_Grid')['Temperature'].mean().reset_index()
|
||||
# 重命名列,使其更具可读性
|
||||
temperature_mean_by_grid.columns = [
|
||||
'Longitude_Grid', 'Mean_Temperature']
|
||||
# 添加高度信息列,方便后续区分不同高度的结果
|
||||
temperature_mean_by_grid['Altitude'] = altitude
|
||||
# 将当前高度的结果添加到列表中
|
||||
all_heights_mean_temperature.append(temperature_mean_by_grid)
|
||||
# 将所有高度的结果合并为一个DataFrame
|
||||
combined_mean_temperature_df = pd.concat(
|
||||
all_heights_mean_temperature, ignore_index=True)
|
||||
|
||||
# 基于Altitude列合并两个DataFrame,只保留能匹配上的行
|
||||
merged_df = pd.merge(combined_mean_temperature_df,
|
||||
altitude_temperature_mean, on='Altitude', how='inner')
|
||||
# 计算差值(减去wn0的扰动)
|
||||
merged_df['Temperature_Difference'] = merged_df['Mean_Temperature_x'] - \
|
||||
merged_df['Mean_Temperature_y']
|
||||
|
||||
# 按Altitude分组
|
||||
grouped = merged_df.groupby('Altitude')
|
||||
|
||||
def single_harmonic(x, A, phi):
|
||||
return A * np.sin(2 * np.pi / (18 / k) * x + phi)
|
||||
# 初始化存储每个高度的最佳拟合参数、拟合曲线、残差值以及背景温度的字典
|
||||
fit_results = {}
|
||||
fitted_curves = {}
|
||||
residuals = {}
|
||||
background_temperatures = {}
|
||||
for altitude, group in grouped:
|
||||
y_data = group['Temperature_Difference'].values
|
||||
x_data = np.arange(len(y_data))
|
||||
wn0_data = group['Mean_Temperature_y'].values # 获取同一高度下的wn0数据
|
||||
# 检查Temperature_Difference列是否全部为NaN
|
||||
if np.all(np.isnan(y_data)):
|
||||
fit_results[altitude] = {
|
||||
'A': [np.nan] * 5, 'phi': [np.nan] * 5}
|
||||
fitted_curves[altitude] = [np.nan * x_data] * 5
|
||||
residuals[altitude] = np.nan * x_data
|
||||
background_temperatures[altitude] = np.nan * x_data
|
||||
else:
|
||||
# 替换NaN值为非NaN值的均值
|
||||
y_data = np.where(np.isnan(y_data), np.nanmean(y_data), y_data)
|
||||
# 初始化存储WN参数和曲线的列表
|
||||
wn_params = []
|
||||
wn_curves = []
|
||||
# 计算wn0(使用Mean_Temperature_y列数据)
|
||||
wn0 = wn0_data
|
||||
|
||||
# 对WN1至WN5进行拟合
|
||||
for k in range(1, 6):
|
||||
# 更新单谐波函数中的k值
|
||||
def harmonic_func(
|
||||
x, A, phi): return single_harmonic(x, A, phi)
|
||||
# 使用curve_fit进行拟合
|
||||
popt, pcov = curve_fit(harmonic_func, x_data, y_data, p0=[
|
||||
np.nanmax(y_data) - np.nanmin(y_data), 0])
|
||||
A_fit, phi_fit = popt
|
||||
# 存储拟合结果
|
||||
wn_params.append({'A': A_fit, 'phi': phi_fit})
|
||||
# 使用拟合参数生成拟合曲线
|
||||
WN = harmonic_func(x_data, A_fit, phi_fit)
|
||||
wn_curves.append(WN)
|
||||
# 计算残差值
|
||||
y_data = y_data - WN # 使用残差值作为下一次拟合的y_data
|
||||
# 存储结果
|
||||
fit_results[altitude] = wn_params
|
||||
fitted_curves[altitude] = wn_curves
|
||||
residuals[altitude] = y_data
|
||||
# 计算同一高度下的背景温度(wn0 + wn1 + wn2 + wn3 + wn4 + wn5)
|
||||
wn_sum = np.sum([wn0] + wn_curves, axis=0)
|
||||
background_temperatures[altitude] = wn_sum
|
||||
|
||||
# 将每个字典转换成一个 DataFrame
|
||||
df = pd.DataFrame(residuals)
|
||||
# 使用前向填充(用上一个有效值填充 NaN)
|
||||
df.ffill(axis=1, inplace=True)
|
||||
# 初始化一个新的字典来保存处理结果
|
||||
result = {}
|
||||
# 定义滤波范围
|
||||
lambda_low = 2 # 2 km
|
||||
lambda_high = 15 # 15 km
|
||||
f_low = 2 * np.pi / lambda_high
|
||||
f_high = 2 * np.pi / lambda_low
|
||||
# 循环处理df的每一行(每个高度)
|
||||
for idx, residuals_array in df.iterrows():
|
||||
# 提取有效值
|
||||
valid_values = np.ma.masked_array(
|
||||
residuals_array, np.isnan(residuals_array))
|
||||
compressed_values = valid_values.compressed() # 去除NaN值后的数组
|
||||
N = len(compressed_values) # 有效值的数量
|
||||
# 如果有效值为空(即所有值都是NaN),则将结果设置为NaN
|
||||
if N == 0:
|
||||
result[idx] = np.full_like(residuals_array, np.nan)
|
||||
else:
|
||||
# 时间序列和频率
|
||||
dt = 0.02 # 假设的时间间隔
|
||||
n = np.arange(N)
|
||||
f = n / (N * dt)
|
||||
# 傅里叶变换
|
||||
y = np.fft.fft(compressed_values)
|
||||
# 频率滤波
|
||||
yy = y.copy()
|
||||
freq_filter = (f >= f_low) & (f <= f_high)
|
||||
yy[~freq_filter] = 0
|
||||
# 逆傅里叶变换
|
||||
perturbation_after = np.real(np.fft.ifft(yy))
|
||||
# 将处理结果插回到result字典中
|
||||
result[idx] = perturbation_after
|
||||
|
||||
# 处理背景温度和扰动温度数据格式
|
||||
heights = list(background_temperatures.keys())
|
||||
data_length = len(next(iter(background_temperatures.values())))
|
||||
background_matrix = np.zeros((data_length, len(heights)))
|
||||
for idx, height in enumerate(heights):
|
||||
background_matrix[:, idx] = background_temperatures[height]
|
||||
|
||||
heights = list(result.keys())
|
||||
data_length = len(next(iter(result.values())))
|
||||
perturbation_matrix = np.zeros((data_length, len(heights)))
|
||||
for idx, height in enumerate(heights):
|
||||
perturbation_matrix[:, idx] = result[height]
|
||||
perturbation_matrix = perturbation_matrix.T
|
||||
|
||||
# 计算 Brunt-Väisälä 频率和势能
|
||||
heights_for_calc = np.linspace(0, 60, 3000) * 1000
|
||||
|
||||
def brunt_vaisala_frequency(g, BT_z, c_p, heights):
|
||||
# 计算位温随高度的变化率
|
||||
dBT_z_dz = np.gradient(BT_z, heights)
|
||||
# 计算 Brunt-Väisälä 频率,根号内取绝对值
|
||||
frequency_squared = (g / BT_z) * ((g / c_p) + dBT_z_dz)
|
||||
frequency = np.sqrt(np.abs(frequency_squared))
|
||||
return frequency
|
||||
|
||||
# 计算势能
|
||||
def calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z):
|
||||
# 计算势能
|
||||
return 0.5 * ((g / N_z) ** 2) * ((PT_z / BT_z) ** 2)
|
||||
g = 9.81 # 重力加速度
|
||||
c_p = 1004.5 # 比热容
|
||||
N_z_matrix = []
|
||||
PT_z_matrix = []
|
||||
for i in range(background_matrix.shape[0]):
|
||||
BT_z = np.array(background_matrix[i])
|
||||
PT_z = np.array(perturbation_matrix[i])
|
||||
N_z = brunt_vaisala_frequency(g, BT_z, c_p, heights_for_calc)
|
||||
PW = calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z)
|
||||
N_z_matrix.append(N_z)
|
||||
PT_z_matrix.append(PW)
|
||||
ktemp_Nz = np.vstack(N_z_matrix)
|
||||
ktemp_Ptz = np.vstack(PT_z_matrix)
|
||||
mean_ktemp_Nz = np.mean(ktemp_Nz, axis=0)
|
||||
mean_ktemp_Ptz = np.mean(ktemp_Ptz, axis=0)
|
||||
# save to cache
|
||||
np.save(cache_path_nz, mean_ktemp_Nz)
|
||||
np.save(cache_path_ptz, mean_ktemp_Ptz)
|
||||
|
||||
return mean_ktemp_Nz, mean_ktemp_Ptz
|
||||
else:
|
||||
print(f"文件夹 {folder_path} 不存在。")
|
||||
return None, None
|
||||
Loading…
x
Reference in New Issue
Block a user