iter: v1.5
This commit is contained in:
parent
104e253e2b
commit
0c9297c0fa
26
backend.py
26
backend.py
@ -1,26 +1,42 @@
|
||||
from gevent import pywsgi, monkey
|
||||
monkey.patch_all()
|
||||
|
||||
import cosmic
|
||||
import tidi
|
||||
from utils import *
|
||||
import saber
|
||||
import radar
|
||||
import balloon
|
||||
from flask import Flask
|
||||
from flask import Flask, request
|
||||
from flask_cors import CORS
|
||||
from typing import get_args
|
||||
import sys
|
||||
import matplotlib.font_manager as fm
|
||||
|
||||
app = Flask(__name__)
|
||||
fm.fontManager.addfont("./SimHei.ttf")
|
||||
CORS(app)
|
||||
|
||||
fm.fontManager.addfont("./SimHei.ttf")
|
||||
@app.before_request
|
||||
def auth():
|
||||
# check for method
|
||||
# if it is OPTIONS, do not check for auth
|
||||
if request.method == "OPTIONS":
|
||||
return
|
||||
code = request.headers.get("Authorization")
|
||||
print(code)
|
||||
if code != "0101":
|
||||
return "Unauthorized", 401
|
||||
|
||||
@app.route("/ping")
|
||||
def ping():
|
||||
return "pong"
|
||||
|
||||
app.register_blueprint(balloon.balloon_module, url_prefix="/balloon")
|
||||
app.register_blueprint(radar.radar_module, url_prefix="/radar")
|
||||
app.register_blueprint(saber.saber_module, url_prefix="/saber")
|
||||
app.register_blueprint(tidi.tidi_module, url_prefix="/tidi")
|
||||
|
||||
app.register_blueprint(cosmic.cosmic_module, url_prefix="/cosmic")
|
||||
# allow cors
|
||||
CORS(app)
|
||||
|
||||
@ -36,4 +52,6 @@ if __name__ == '__main__':
|
||||
server.serve_forever()
|
||||
|
||||
elif 'debug' in args:
|
||||
app.run("0.0.0.0",debug=True)
|
||||
app.run("0.0.0.0",port=18200,debug=True)
|
||||
else:
|
||||
raise Exception("Invalied")
|
||||
|
||||
@ -52,6 +52,10 @@ def list_ballon():
|
||||
def list_ballon_year_modes():
|
||||
return get_all_modes()
|
||||
|
||||
@balloon_module.route("/metadata/stations")
|
||||
def list_stations():
|
||||
return []
|
||||
|
||||
|
||||
@balloon_module.route("/render/year")
|
||||
def render_full_year():
|
||||
|
||||
22
cosmic/__init__.py
Normal file
22
cosmic/__init__.py
Normal file
@ -0,0 +1,22 @@
|
||||
from io import BytesIO
|
||||
from flask import Blueprint, request, send_file
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from cosmic.temp_render import temp_render
|
||||
|
||||
|
||||
cosmic_module = Blueprint("Cosmic", __name__)
|
||||
|
||||
@cosmic_module.route('/metadata')
|
||||
def get_meta():
|
||||
return []
|
||||
|
||||
@cosmic_module.route('/temp_render')
|
||||
def render():
|
||||
T = request.args.get("T", 16)
|
||||
temp_render(T=int(T))
|
||||
buf = BytesIO()
|
||||
|
||||
plt.savefig(buf, format="png")
|
||||
buf.seek(0)
|
||||
return send_file(buf, mimetype="image/png")
|
||||
118
cosmic/temp_render.py
Normal file
118
cosmic/temp_render.py
Normal file
@ -0,0 +1,118 @@
|
||||
#此代码是对数据处理后的txt数据进行行星波参数提取绘图
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from scipy.optimize import curve_fit
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# 定义拟合函数
|
||||
# 解决绘图中中文不能显示的问题
|
||||
import matplotlib
|
||||
# 设置中文显示和负号正常显示
|
||||
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
|
||||
matplotlib.rcParams['axes.unicode_minus'] = False # 正常显示负号
|
||||
# 读取一年的数据文件
|
||||
|
||||
|
||||
def temp_render(path:str = "./cosmic/cosmic.txt", T = 16):
|
||||
def u_func(x, *params):
|
||||
a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7, a8, b8, a9, b9 = params
|
||||
return (
|
||||
a1 * np.sin((2 * np.pi / T) * t - 4 * x + b1)
|
||||
+ a2 * np.sin((2 * np.pi / T) * t - 3 * x + b2)
|
||||
+ a3 * np.sin((2 * np.pi / T) * t - 2 * x + b3)
|
||||
+ a4 * np.sin((2 * np.pi / T) * t - x + b4)
|
||||
+ a5 * np.sin((2 * np.pi / T) * t + b5)
|
||||
+ a6 * np.sin((2 * np.pi / T) * t + x + b6)
|
||||
+ a7 * np.sin((2 * np.pi / T) * t + 2 * x + b7)
|
||||
+ a8 * np.sin((2 * np.pi / T) * t + 3 * x + b8)
|
||||
+ a9 * np.sin((2 * np.pi / T) * t + 4 * x + b9)
|
||||
)
|
||||
|
||||
df = pd.read_csv(path, sep='\s+')
|
||||
# 删除有 NaN 的行
|
||||
df = df.dropna(subset=['Temperature'])
|
||||
# 设置初始参数
|
||||
# initial_guess = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] # v0, a1, b1, a2, b2, a3, b3
|
||||
initial_guess = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,0.5, 0.5, 0.5, 0.5,0.5, 0.5, 0.5, 0.5] # 9个 a 和 9个 b 参数
|
||||
|
||||
# 设置参数界限
|
||||
bounds = (
|
||||
[0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf], # 下界
|
||||
[np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
||||
np.inf, np.inf, np.inf]) # 上界
|
||||
|
||||
|
||||
|
||||
|
||||
# 用于存储拟合参数结果的列表
|
||||
all_fit_results = []
|
||||
|
||||
# 设置最小数据量的阈值
|
||||
min_data_points = 36
|
||||
|
||||
# 进行多个时间窗口的拟合
|
||||
#T应该取5、10、16
|
||||
if T not in [5, 10, 16]:
|
||||
raise ValueError("T should be 5, 10, or 16")
|
||||
for start_day in range(0, 365-3*T): # 最后一个窗口为[351, 366]
|
||||
end_day = start_day + 3 * T # 每个窗口的结束时间为 start_day + 3*T
|
||||
|
||||
# 选择当前窗口的数据
|
||||
df_8 = df[(df['Time'] >= start_day) & (df['Time'] <= end_day)]
|
||||
|
||||
# 检查当前窗口的数据量
|
||||
if len(df_8) < min_data_points:
|
||||
# 输出数据量不足的警告
|
||||
print(f"数据量不足,无法拟合:{start_day} 到 {end_day},数据点数量:{len(df_8)}")
|
||||
# 将拟合参数设置为 NaN
|
||||
all_fit_results.append([np.nan] * 18)
|
||||
continue # 跳过当前时间窗口,继续下一个窗口
|
||||
|
||||
# 提取时间、经度、温度数据
|
||||
t = np.array(df_8['Time']) # 时间
|
||||
x = np.array(df_8['Longitude_Radians']) # 经度弧度制
|
||||
temperature = np.array(df_8['Temperature']) # 温度,因变量
|
||||
|
||||
# 用T进行拟合
|
||||
popt, pcov = curve_fit(u_func, x, temperature, p0=initial_guess, bounds=bounds, maxfev=50000)
|
||||
|
||||
# 将拟合结果添加到列表中
|
||||
all_fit_results.append(popt)
|
||||
|
||||
# 将结果转换为DataFrame
|
||||
columns = ['a1', 'b1', 'a2', 'b2', 'a3', 'b3', 'a4', 'b4', 'a5', 'b5', 'a6', 'b6', 'a7', 'b7', 'a8', 'b8', 'a9', 'b9']
|
||||
fit_df = pd.DataFrame(all_fit_results, columns=columns) # fit_df即为拟合的参数汇总
|
||||
|
||||
# -------------------------------画图----------------------------
|
||||
#a1-a9,对应波数-4、-3、-2、-1、0、1、2、3、4的行星波振幅
|
||||
a_columns = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9']
|
||||
k_values = list(range(-4, 5)) # 从 -4 到 4
|
||||
|
||||
# 创建一个字典映射 k 值到 a_columns
|
||||
k_to_a = {f'k={k}': a for k, a in zip(k_values, a_columns)}
|
||||
|
||||
# 获取索引并转换为 numpy 数组
|
||||
x_values = fit_df.index.to_numpy()
|
||||
|
||||
# 对每一列生成独立的图
|
||||
for k, col in k_to_a.items():
|
||||
plt.figure(figsize=(8, 6)) # 创建新的图形
|
||||
plt.plot(x_values, fit_df[col].values)
|
||||
plt.title(f'{k} 振幅图')
|
||||
plt.xlabel('Day')
|
||||
plt.ylabel('振幅')
|
||||
|
||||
# 设置横坐标的动态调整
|
||||
adjusted_x_values = x_values + (3 * T + 1) / 2
|
||||
if len(adjusted_x_values) > 50:
|
||||
step = 30
|
||||
tick_positions = adjusted_x_values[::step] # 选择每30个点
|
||||
tick_labels = [f'{int(val)}' for val in tick_positions]
|
||||
else:
|
||||
tick_positions = adjusted_x_values
|
||||
tick_labels = [f'{int(val)}' for val in tick_positions]
|
||||
|
||||
plt.xticks(ticks=tick_positions, labels=tick_labels)
|
||||
|
||||
plt.show() # 显示图形
|
||||
@ -25,13 +25,13 @@ def extract_payload():
|
||||
return send_file(buffer, mimetype="image/png")
|
||||
|
||||
|
||||
all_saber_files = glob.glob("./saber/data/**/**.nc", recursive=True)
|
||||
_all_saber_files = glob.glob("./saber/data/**/**.nc", recursive=True)
|
||||
|
||||
|
||||
@saber_module.route("/metadata")
|
||||
def get_files():
|
||||
# normalizing the path, and replace \\ with /
|
||||
all_saber_files = [path.replace("\\", "/") for path in all_saber_files]
|
||||
all_saber_files = [path.replace("\\", "/") for path in _all_saber_files]
|
||||
return all_saber_files
|
||||
|
||||
|
||||
|
||||
115
staged/cosmic行星波参数全年逐日绘图.py
Normal file
115
staged/cosmic行星波参数全年逐日绘图.py
Normal file
@ -0,0 +1,115 @@
|
||||
#此代码是对数据处理后的txt数据进行行星波参数提取绘图
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from scipy.optimize import curve_fit
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# 解决绘图中中文不能显示的问题
|
||||
import matplotlib
|
||||
# 设置中文显示和负号正常显示
|
||||
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
|
||||
matplotlib.rcParams['axes.unicode_minus'] = False # 正常显示负号
|
||||
# 读取一年的数据文件
|
||||
|
||||
df = pd.read_csv(r'./cosmic.txt', sep='\s+')
|
||||
# 删除有 NaN 的行
|
||||
df = df.dropna(subset=['Temperature'])
|
||||
# 设置初始参数
|
||||
# initial_guess = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] # v0, a1, b1, a2, b2, a3, b3
|
||||
initial_guess = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,0.5, 0.5, 0.5, 0.5,0.5, 0.5, 0.5, 0.5] # 9个 a 和 9个 b 参数
|
||||
|
||||
# 设置参数界限
|
||||
bounds = (
|
||||
[0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf, 0, -np.inf], # 下界
|
||||
[np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, np.inf,
|
||||
np.inf, np.inf, np.inf]) # 上界
|
||||
|
||||
|
||||
# 定义拟合函数
|
||||
def u_func(x, *params):
|
||||
a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7, a8, b8, a9, b9 = params
|
||||
return (
|
||||
a1 * np.sin((2 * np.pi / T) * t - 4 * x + b1)
|
||||
+ a2 * np.sin((2 * np.pi / T) * t - 3 * x + b2)
|
||||
+ a3 * np.sin((2 * np.pi / T) * t - 2 * x + b3)
|
||||
+ a4 * np.sin((2 * np.pi / T) * t - x + b4)
|
||||
+ a5 * np.sin((2 * np.pi / T) * t + b5)
|
||||
+ a6 * np.sin((2 * np.pi / T) * t + x + b6)
|
||||
+ a7 * np.sin((2 * np.pi / T) * t + 2 * x + b7)
|
||||
+ a8 * np.sin((2 * np.pi / T) * t + 3 * x + b8)
|
||||
+ a9 * np.sin((2 * np.pi / T) * t + 4 * x + b9)
|
||||
)
|
||||
|
||||
|
||||
# 用于存储拟合参数结果的列表
|
||||
all_fit_results = []
|
||||
|
||||
# 设置最小数据量的阈值
|
||||
min_data_points = 36
|
||||
|
||||
# 进行多个时间窗口的拟合
|
||||
#T应该取5、10、16
|
||||
|
||||
T = 16 # 设置 T,可以动态调整
|
||||
for start_day in range(0, 365-3*T): # 最后一个窗口为[351, 366]
|
||||
end_day = start_day + 3 * T # 每个窗口的结束时间为 start_day + 3*T
|
||||
|
||||
# 选择当前窗口的数据
|
||||
df_8 = df[(df['Time'] >= start_day) & (df['Time'] <= end_day)]
|
||||
|
||||
# 检查当前窗口的数据量
|
||||
if len(df_8) < min_data_points:
|
||||
# 输出数据量不足的警告
|
||||
print(f"数据量不足,无法拟合:{start_day} 到 {end_day},数据点数量:{len(df_8)}")
|
||||
# 将拟合参数设置为 NaN
|
||||
all_fit_results.append([np.nan] * 18)
|
||||
continue # 跳过当前时间窗口,继续下一个窗口
|
||||
|
||||
# 提取时间、经度、温度数据
|
||||
t = np.array(df_8['Time']) # 时间
|
||||
x = np.array(df_8['Longitude_Radians']) # 经度弧度制
|
||||
temperature = np.array(df_8['Temperature']) # 温度,因变量
|
||||
|
||||
# 用T进行拟合
|
||||
popt, pcov = curve_fit(u_func, x, temperature, p0=initial_guess, bounds=bounds, maxfev=50000)
|
||||
|
||||
# 将拟合结果添加到列表中
|
||||
all_fit_results.append(popt)
|
||||
|
||||
# 将结果转换为DataFrame
|
||||
columns = ['a1', 'b1', 'a2', 'b2', 'a3', 'b3', 'a4', 'b4', 'a5', 'b5', 'a6', 'b6', 'a7', 'b7', 'a8', 'b8', 'a9', 'b9']
|
||||
fit_df = pd.DataFrame(all_fit_results, columns=columns) # fit_df即为拟合的参数汇总
|
||||
|
||||
# -------------------------------画图----------------------------
|
||||
#a1-a9,对应波数-4、-3、-2、-1、0、1、2、3、4的行星波振幅
|
||||
a_columns = ['a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9']
|
||||
k_values = list(range(-4, 5)) # 从 -4 到 4
|
||||
|
||||
# 创建一个字典映射 k 值到 a_columns
|
||||
k_to_a = {f'k={k}': a for k, a in zip(k_values, a_columns)}
|
||||
|
||||
# 获取索引并转换为 numpy 数组
|
||||
x_values = fit_df.index.to_numpy()
|
||||
|
||||
# 对每一列生成独立的图
|
||||
for k, col in k_to_a.items():
|
||||
plt.figure(figsize=(8, 6)) # 创建新的图形
|
||||
plt.plot(x_values, fit_df[col].values)
|
||||
plt.title(f'{k} 振幅图')
|
||||
plt.xlabel('Day')
|
||||
plt.ylabel('振幅')
|
||||
|
||||
# 设置横坐标的动态调整
|
||||
adjusted_x_values = x_values + (3 * T + 1) / 2
|
||||
if len(adjusted_x_values) > 50:
|
||||
step = 30
|
||||
tick_positions = adjusted_x_values[::step] # 选择每30个点
|
||||
tick_labels = [f'{int(val)}' for val in tick_positions]
|
||||
else:
|
||||
tick_positions = adjusted_x_values
|
||||
tick_labels = [f'{int(val)}' for val in tick_positions]
|
||||
|
||||
plt.xticks(ticks=tick_positions, labels=tick_labels)
|
||||
|
||||
plt.show() # 显示图形
|
||||
547
staged/cosmic重力波多天.py
Normal file
547
staged/cosmic重力波多天.py
Normal file
@ -0,0 +1,547 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from scipy.interpolate import interp1d
|
||||
from scipy.optimize import curve_fit
|
||||
import netCDF4 as nc
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
# 设置支持中文的字体
|
||||
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 设置字体为微软雅黑
|
||||
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
|
||||
|
||||
# 定义处理单个文件的函数
|
||||
def process_single_file(base_folder_path, i):
|
||||
# 构建当前文件夹的路径
|
||||
if i < 10:
|
||||
folder_name = f"atmPrf_repro2021_2008_00{i}" # 一位数,前面加两个0
|
||||
elif i < 100:
|
||||
folder_name = f"atmPrf_repro2021_2008_0{i}" # 两位数,前面加一个0
|
||||
else:
|
||||
folder_name = f"atmPrf_repro2021_2008_{i}" # 三位数,不加0
|
||||
folder_path = os.path.join(base_folder_path, folder_name)
|
||||
# 检查文件夹是否存在
|
||||
if os.path.exists(folder_path):
|
||||
dfs = []
|
||||
# 遍历文件夹中的文件
|
||||
for file_name in os.listdir(folder_path):
|
||||
if file_name.endswith('.0390_nc'):
|
||||
finfo = os.path.join(folder_path, file_name)
|
||||
print(f"正在处理文件: {finfo}")
|
||||
try:
|
||||
dataset = nc.Dataset(finfo, 'r')
|
||||
# 提取变量数据
|
||||
temp = dataset.variables['Temp'][:]
|
||||
altitude = dataset.variables['MSL_alt'][:]
|
||||
lat = dataset.variables['Lat'][:]
|
||||
lon = dataset.variables['Lon'][:]
|
||||
# 创建DataFrame
|
||||
df = pd.DataFrame({
|
||||
'Longitude': lon,
|
||||
'Latitude': lat,
|
||||
'Altitude': altitude,
|
||||
'Temperature': temp
|
||||
})
|
||||
dataset.close()
|
||||
# 剔除高度大于60的行
|
||||
df = df[df['Altitude'] <= 60]
|
||||
# 对每个文件的数据进行插值
|
||||
alt_interp = np.linspace(df['Altitude'].min(), df['Altitude'].max(), 3000)
|
||||
f_alt = interp1d(df['Altitude'], df['Altitude'], kind='linear', fill_value="extrapolate")
|
||||
f_lon = interp1d(df['Altitude'], df['Longitude'], kind='linear', fill_value="extrapolate")
|
||||
f_lat = interp1d(df['Altitude'], df['Latitude'], kind='linear', fill_value="extrapolate")
|
||||
f_temp = interp1d(df['Altitude'], df['Temperature'], kind='linear', fill_value="extrapolate")
|
||||
# 计算插值结果
|
||||
interpolated_alt = f_alt(alt_interp)
|
||||
interpolated_lon = f_lon(alt_interp)
|
||||
interpolated_lat = f_lat(alt_interp)
|
||||
interpolated_temp = f_temp(alt_interp)
|
||||
# 创建插值后的DataFrame
|
||||
interpolated_df = pd.DataFrame({
|
||||
'Altitude': interpolated_alt,
|
||||
'Longitude': interpolated_lon,
|
||||
'Latitude': interpolated_lat,
|
||||
'Temperature': interpolated_temp
|
||||
})
|
||||
# 将插值后的DataFrame添加到列表中
|
||||
dfs.append(interpolated_df)
|
||||
except Exception as e:
|
||||
print(f"处理文件 {finfo} 时出错: {e}")
|
||||
# 按行拼接所有插值后的DataFrame
|
||||
final_df = pd.concat(dfs, axis=0, ignore_index=True)
|
||||
# 获取 DataFrame 的长度
|
||||
num_rows = len(final_df)
|
||||
# 生成一个每3000个数从0到2999的序列并重复
|
||||
altitude_values = np.tile(np.arange(3000), num_rows // 3000 + 1)[:num_rows]
|
||||
# 将生成的值赋给 DataFrame 的 'Altitude' 列
|
||||
final_df['Altitude'] = altitude_values
|
||||
# 摄氏度换算开尔文
|
||||
final_df['Temperature'] = final_df['Temperature'] + 273.15
|
||||
|
||||
# 筛选出纬度在30到40度之间的数据
|
||||
latitude_filtered_df = final_df[(final_df['Latitude'] >= 30) & (final_df['Latitude'] <= 40)]
|
||||
|
||||
# 划分经度网格,20°的网格
|
||||
lon_min, lon_max = latitude_filtered_df['Longitude'].min(), latitude_filtered_df['Longitude'].max()
|
||||
lon_bins = np.arange(lon_min, lon_max + 20, 20) # 创建经度网格边界
|
||||
# 将数据分配到网格中
|
||||
latitude_filtered_df['Longitude_Grid'] = np.digitize(latitude_filtered_df['Longitude'], lon_bins) - 1
|
||||
|
||||
# 对相同高度的温度取均值,忽略NaN
|
||||
altitude_temperature_mean = latitude_filtered_df.groupby('Altitude')['Temperature'].mean().reset_index()
|
||||
# 重命名列,使其更具可读性
|
||||
altitude_temperature_mean.columns = ['Altitude', 'Mean_Temperature']
|
||||
|
||||
# 定义高度的范围(这里从0到最短段)
|
||||
altitude_range = range(0, 3000)
|
||||
all_heights_mean_temperature = [] # 用于存储所有高度下的温度均值结果
|
||||
for altitude in altitude_range:
|
||||
# 筛选出当前高度的所有数据
|
||||
altitude_df = latitude_filtered_df[latitude_filtered_df['Altitude'] == altitude]
|
||||
# 对Longitude_Grid同一区间的温度取均值
|
||||
temperature_mean_by_grid = altitude_df.groupby('Longitude_Grid')['Temperature'].mean().reset_index()
|
||||
# 重命名列,使其更具可读性
|
||||
temperature_mean_by_grid.columns = ['Longitude_Grid', 'Mean_Temperature']
|
||||
# 添加高度信息列,方便后续区分不同高度的结果
|
||||
temperature_mean_by_grid['Altitude'] = altitude
|
||||
# 将当前高度的结果添加到列表中
|
||||
all_heights_mean_temperature.append(temperature_mean_by_grid)
|
||||
# 将所有高度的结果合并为一个DataFrame
|
||||
combined_mean_temperature_df = pd.concat(all_heights_mean_temperature, ignore_index=True)
|
||||
|
||||
# 基于Altitude列合并两个DataFrame,只保留能匹配上的行
|
||||
merged_df = pd.merge(combined_mean_temperature_df, altitude_temperature_mean, on='Altitude', how='inner')
|
||||
# 计算差值(减去wn0的扰动)
|
||||
merged_df['Temperature_Difference'] = merged_df['Mean_Temperature_x'] - merged_df['Mean_Temperature_y']
|
||||
|
||||
# 按Altitude分组
|
||||
grouped = merged_df.groupby('Altitude')
|
||||
|
||||
def single_harmonic(x, A, phi):
|
||||
return A * np.sin(2 * np.pi / (18 / k) * x + phi)
|
||||
# 初始化存储每个高度的最佳拟合参数、拟合曲线、残差值以及背景温度的字典
|
||||
fit_results = {}
|
||||
fitted_curves = {}
|
||||
residuals = {}
|
||||
background_temperatures = {}
|
||||
for altitude, group in grouped:
|
||||
y_data = group['Temperature_Difference'].values
|
||||
x_data = np.arange(len(y_data))
|
||||
wn0_data = group['Mean_Temperature_y'].values # 获取同一高度下的wn0数据
|
||||
# 检查Temperature_Difference列是否全部为NaN
|
||||
if np.all(np.isnan(y_data)):
|
||||
fit_results[altitude] = {'A': [np.nan] * 5, 'phi': [np.nan] * 5}
|
||||
fitted_curves[altitude] = [np.nan * x_data] * 5
|
||||
residuals[altitude] = np.nan * x_data
|
||||
background_temperatures[altitude] = np.nan * x_data
|
||||
else:
|
||||
# 替换NaN值为非NaN值的均值
|
||||
y_data = np.where(np.isnan(y_data), np.nanmean(y_data), y_data)
|
||||
# 初始化存储WN参数和曲线的列表
|
||||
wn_params = []
|
||||
wn_curves = []
|
||||
# 计算wn0(使用Mean_Temperature_y列数据)
|
||||
wn0 = wn0_data
|
||||
|
||||
# 对WN1至WN5进行拟合
|
||||
for k in range(1, 6):
|
||||
# 更新单谐波函数中的k值
|
||||
harmonic_func = lambda x, A, phi: single_harmonic(x, A, phi)
|
||||
# 使用curve_fit进行拟合
|
||||
popt, pcov = curve_fit(harmonic_func, x_data, y_data, p0=[np.nanmax(y_data) - np.nanmin(y_data), 0])
|
||||
A_fit, phi_fit = popt
|
||||
# 存储拟合结果
|
||||
wn_params.append({'A': A_fit, 'phi': phi_fit})
|
||||
# 使用拟合参数生成拟合曲线
|
||||
WN = harmonic_func(x_data, A_fit, phi_fit)
|
||||
wn_curves.append(WN)
|
||||
# 计算残差值
|
||||
y_data = y_data - WN # 使用残差值作为下一次拟合的y_data
|
||||
# 存储结果
|
||||
fit_results[altitude] = wn_params
|
||||
fitted_curves[altitude] = wn_curves
|
||||
residuals[altitude] = y_data
|
||||
# 计算同一高度下的背景温度(wn0 + wn1 + wn2 + wn3 + wn4 + wn5)
|
||||
wn_sum = np.sum([wn0] + wn_curves, axis=0)
|
||||
background_temperatures[altitude] = wn_sum
|
||||
|
||||
# 将每个字典转换成一个 DataFrame
|
||||
df = pd.DataFrame(residuals)
|
||||
# 使用前向填充(用上一个有效值填充 NaN)
|
||||
df.ffill(axis=1, inplace=True)
|
||||
# 初始化一个新的字典来保存处理结果
|
||||
result = {}
|
||||
# 定义滤波范围
|
||||
lambda_low = 2 # 2 km
|
||||
lambda_high = 15 # 15 km
|
||||
f_low = 2 * np.pi / lambda_high
|
||||
f_high = 2 * np.pi / lambda_low
|
||||
# 循环处理df的每一行(每个高度)
|
||||
for idx, residuals_array in df.iterrows():
|
||||
# 提取有效值
|
||||
valid_values = np.ma.masked_array(residuals_array, np.isnan(residuals_array))
|
||||
compressed_values = valid_values.compressed() # 去除NaN值后的数组
|
||||
N = len(compressed_values) # 有效值的数量
|
||||
# 如果有效值为空(即所有值都是NaN),则将结果设置为NaN
|
||||
if N == 0:
|
||||
result[idx] = np.full_like(residuals_array, np.nan)
|
||||
else:
|
||||
# 时间序列和频率
|
||||
dt = 0.02 # 假设的时间间隔
|
||||
n = np.arange(N)
|
||||
f = n / (N * dt)
|
||||
# 傅里叶变换
|
||||
y = np.fft.fft(compressed_values)
|
||||
# 频率滤波
|
||||
yy = y.copy()
|
||||
freq_filter = (f >= f_low) & (f <= f_high)
|
||||
yy[~freq_filter] = 0
|
||||
# 逆傅里叶变换
|
||||
perturbation_after = np.real(np.fft.ifft(yy))
|
||||
# 将处理结果插回到result字典中
|
||||
result[idx] = perturbation_after
|
||||
|
||||
# 处理背景温度和扰动温度数据格式
|
||||
heights = list(background_temperatures.keys())
|
||||
data_length = len(next(iter(background_temperatures.values())))
|
||||
background_matrix = np.zeros((data_length, len(heights)))
|
||||
for idx, height in enumerate(heights):
|
||||
background_matrix[:, idx] = background_temperatures[height]
|
||||
|
||||
heights = list(result.keys())
|
||||
data_length = len(next(iter(result.values())))
|
||||
perturbation_matrix = np.zeros((data_length, len(heights)))
|
||||
for idx, height in enumerate(heights):
|
||||
perturbation_matrix[:, idx] = result[height]
|
||||
perturbation_matrix = perturbation_matrix.T
|
||||
|
||||
# 计算 Brunt-Väisälä 频率和势能
|
||||
heights_for_calc = np.linspace(0, 60, 3000) * 1000
|
||||
|
||||
def brunt_vaisala_frequency(g, BT_z, c_p, heights):
|
||||
# 计算位温随高度的变化率
|
||||
dBT_z_dz = np.gradient(BT_z, heights)
|
||||
# 计算 Brunt-Väisälä 频率,根号内取绝对值
|
||||
frequency_squared = (g / BT_z) * ((g / c_p) + dBT_z_dz)
|
||||
frequency = np.sqrt(np.abs(frequency_squared))
|
||||
return frequency
|
||||
|
||||
# 计算势能
|
||||
def calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z):
|
||||
# 计算势能
|
||||
return 0.5 * ((g / N_z) ** 2) * ((PT_z / BT_z) ** 2)
|
||||
g = 9.81 # 重力加速度
|
||||
c_p = 1004.5 # 比热容
|
||||
N_z_matrix = []
|
||||
PT_z_matrix = []
|
||||
for i in range(background_matrix.shape[0]):
|
||||
BT_z = np.array(background_matrix[i])
|
||||
PT_z = np.array(perturbation_matrix[i])
|
||||
N_z = brunt_vaisala_frequency(g, BT_z, c_p, heights_for_calc)
|
||||
PW = calculate_gravitational_potential_energy(g, BT_z, N_z, PT_z)
|
||||
N_z_matrix.append(N_z)
|
||||
PT_z_matrix.append(PW)
|
||||
ktemp_Nz = np.vstack(N_z_matrix)
|
||||
ktemp_Ptz = np.vstack(PT_z_matrix)
|
||||
mean_ktemp_Nz = np.mean(ktemp_Nz, axis=0)
|
||||
mean_ktemp_Ptz = np.mean(ktemp_Ptz, axis=0)
|
||||
|
||||
return mean_ktemp_Nz, mean_ktemp_Ptz
|
||||
else:
|
||||
print(f"文件夹 {folder_path} 不存在。")
|
||||
return None, None
|
||||
|
||||
# 主循环,处理1到365个文件
|
||||
base_folder_path = r"E:\COSMIC\2008"
|
||||
all_mean_ktemp_Nz = []
|
||||
all_mean_ktemp_Ptz = []
|
||||
for file_index in range(101, 104):
|
||||
try:
|
||||
mean_ktemp_Nz, mean_ktemp_Ptz = process_single_file(base_folder_path, file_index)
|
||||
if mean_ktemp_Nz is not None and mean_ktemp_Ptz is not None:
|
||||
all_mean_ktemp_Nz.append(mean_ktemp_Nz)
|
||||
all_mean_ktemp_Ptz.append(mean_ktemp_Ptz)
|
||||
except ValueError as e:
|
||||
print(f"Error processing file index {file_index}: {e}, skipping this file.")
|
||||
continue
|
||||
|
||||
# 转换每个数组为二维形状
|
||||
final_mean_ktemp_Nz = np.vstack([arr.reshape(1, -1) for arr in all_mean_ktemp_Nz])
|
||||
final_mean_ktemp_Ptz = np.vstack([arr.reshape(1, -1) for arr in all_mean_ktemp_Ptz])
|
||||
# 使用条件索引替换大于50的值为NaN
|
||||
final_mean_ktemp_Ptz[final_mean_ktemp_Ptz > 50] = np.nan
|
||||
# heights 为每个高度的值
|
||||
heights = np.linspace(0, 60, 3000)
|
||||
df_final_mean_ktemp_Ptz = pd.DataFrame(final_mean_ktemp_Ptz)
|
||||
df_final_mean_ktemp_Nz = pd.DataFrame(final_mean_ktemp_Nz)
|
||||
#-------------------------------------------------绘制年统计图------------------------------------
|
||||
#-----------绘制浮力频率年统计图-----------------------
|
||||
data=df_final_mean_ktemp_Nz.T
|
||||
# 对每个元素进行平方(计算N2)
|
||||
data= data ** 2
|
||||
data=data*10000#(绘图好看)
|
||||
#将大于 10 的值替换为 NaN(个别异常值)
|
||||
data[data > 10] = np.nan
|
||||
# 绘制热力图的函数
|
||||
def plot_heatmap(data, heights, title):
|
||||
plt.figure(figsize=(10, 8))
|
||||
# 绘制热力图,数据中的行代表高度,列代表天数
|
||||
sns.heatmap(data, cmap='coolwarm', xticklabels=1, yticklabels=50, cbar_kws={'label': 'Value'})
|
||||
plt.xlabel('Day')
|
||||
plt.ylabel('Height (km)')
|
||||
plt.title(title)
|
||||
# 设置x轴的刻度,使其每30天显示一个标签
|
||||
num_days = data.shape[1]
|
||||
x_tick_positions = np.arange(0, num_days, 30)
|
||||
x_tick_labels = np.arange(0, num_days, 30)
|
||||
plt.xticks(x_tick_positions, x_tick_labels)
|
||||
# 设置y轴的刻度,使其显示对应的高度
|
||||
plt.yticks(np.linspace(0, data.shape[0] - 1, 6), np.round(np.linspace(heights[0], heights[-1], 6), 2))
|
||||
# 反转 y 轴,使 0 在底部
|
||||
plt.gca().invert_yaxis()
|
||||
plt.show()
|
||||
# 调用函数绘制热力图
|
||||
plot_heatmap(data, heights, 'Heatmap of final_mean_ktemp_Nz(10^(-4))')
|
||||
#-----------------------------------------------------------------------------
|
||||
#-------------绘制重力势能年统计图------------------------------------------------
|
||||
data1=df_final_mean_ktemp_Ptz.T
|
||||
# 绘制热力图的函数
|
||||
def plot_heatmap(data, heights, title):
|
||||
plt.figure(figsize=(10, 8))
|
||||
# 绘制热力图,数据中的行代表高度,列代表天数
|
||||
sns.heatmap(data, cmap='coolwarm', xticklabels=1, yticklabels=50, cbar_kws={'label': 'Value'})
|
||||
plt.xlabel('Day')
|
||||
plt.ylabel('Height (km)')
|
||||
plt.title(title)
|
||||
# 设置x轴的刻度,使其每30天显示一个标签
|
||||
num_days = data.shape[1]
|
||||
x_tick_positions = np.arange(0, num_days, 30)
|
||||
x_tick_labels = np.arange(0, num_days, 30)
|
||||
plt.xticks(x_tick_positions, x_tick_labels)
|
||||
# 设置y轴的刻度,使其显示对应的高度
|
||||
plt.yticks(np.linspace(0, data.shape[0] - 1, 6), np.round(np.linspace(heights[0], heights[-1], 6), 2))
|
||||
# 反转 y 轴,使 0 在底部
|
||||
plt.gca().invert_yaxis()
|
||||
plt.show()
|
||||
# 调用函数绘制热力图
|
||||
plot_heatmap(data1, heights, 'Heatmap of final_mean_ktemp_Ptz(J/kg)')
|
||||
#------------------------绘制月统计图---------------------------------------------------------------------------------
|
||||
#----------绘制浮力频率月统计图-------------------------------------------------
|
||||
# 获取总列数
|
||||
num_columns = data.shape[1]
|
||||
# 按30列分组计算均值
|
||||
averaged_df = []
|
||||
# 逐步处理每30列
|
||||
for i in range(0, num_columns, 30):
|
||||
# 获取当前范围内的列,并计算均值
|
||||
subset = data.iloc[:, i:i+30] # 获取第i到i+29列
|
||||
mean_values = subset.mean(axis=1) # 对每行计算均值
|
||||
averaged_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_df = pd.DataFrame(averaged_df).T
|
||||
# 1. 每3000行取一个均值
|
||||
# 获取总行数
|
||||
num_rows = averaged_df.shape[0]
|
||||
# 创建一个新的列表来存储每3000行的均值
|
||||
averaged_by_rows_df = []
|
||||
# 逐步处理每3000行
|
||||
for i in range(0, num_rows, 3000):
|
||||
# 获取当前范围内的行
|
||||
subset = averaged_df.iloc[i:i+3000, :] # 获取第i到i+99行
|
||||
mean_values = subset.mean(axis=0) # 对每列计算均值
|
||||
averaged_by_rows_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_by_rows_df = pd.DataFrame(averaged_by_rows_df)
|
||||
# 绘制折线图
|
||||
plt.figure(figsize=(10, 6)) # 设置图形的大小
|
||||
plt.plot(averaged_by_rows_df.columns, averaged_by_rows_df.mean(axis=0), marker='o', color='b', label='平均值')
|
||||
# 添加标题和标签
|
||||
plt.title('每月平均N^2的折线图')
|
||||
plt.xlabel('月份')
|
||||
plt.ylabel('N^2(10^-4)')
|
||||
plt.legend()
|
||||
# 显示图形
|
||||
plt.grid(True)
|
||||
plt.xticks(rotation=45) # 让x轴标签(月份)倾斜,以便更清晰显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
#------------重力势能的月统计-----------------------------------
|
||||
# 获取总列数
|
||||
num_columns = data1.shape[1]
|
||||
# 按30列分组计算均值
|
||||
averaged_df = []
|
||||
# 逐步处理每30列
|
||||
for i in range(0, num_columns, 30):
|
||||
# 获取当前范围内的列,并计算均值
|
||||
subset = data1.iloc[:, i:i+30] # 获取第i到i+29列
|
||||
mean_values = subset.mean(axis=1) # 对每行计算均值
|
||||
averaged_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_df = pd.DataFrame(averaged_df).T
|
||||
# 1. 每3000行取一个均值
|
||||
# 获取总行数
|
||||
num_rows = averaged_df.shape[0]
|
||||
# 创建一个新的列表来存储每3000行的均值
|
||||
averaged_by_rows_df = []
|
||||
# 逐步处理每3000行
|
||||
for i in range(0, num_rows, 3000):
|
||||
# 获取当前范围内的行
|
||||
subset = averaged_df.iloc[i:i+3000, :] # 获取第i到i+99行
|
||||
mean_values = subset.mean(axis=0) # 对每列计算均值
|
||||
averaged_by_rows_df.append(mean_values) # 将均值添加到列表
|
||||
# 将结果转化为一个新的 DataFrame
|
||||
averaged_by_rows_df = pd.DataFrame(averaged_by_rows_df)
|
||||
# 绘制折线图
|
||||
plt.figure(figsize=(10, 6)) # 设置图形的大小
|
||||
plt.plot(averaged_by_rows_df.columns, averaged_by_rows_df.mean(axis=0), marker='o', color='b', label='平均值')
|
||||
# 添加标题和标签
|
||||
plt.title('每月平均重力势能的折线图')
|
||||
plt.xlabel('月份')
|
||||
plt.ylabel('重力势能(J/Kg)')
|
||||
plt.legend()
|
||||
# 显示图形
|
||||
plt.grid(True)
|
||||
plt.xticks(rotation=45) # 让x轴标签(月份)倾斜,以便更清晰显示
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# 获取总列数
|
||||
total_columns = data.shape[1]
|
||||
# 用于存储每一组30列计算得到的均值列数据(最终会构成新的DataFrame)
|
||||
mean_columns = []
|
||||
# 分组序号,用于生成列名时区分不同的均值列,从1开始
|
||||
group_index = 1
|
||||
# 按照每30列一组进行划分(不滑动)
|
||||
for start_col in range(0, total_columns, 30):
|
||||
end_col = start_col + 30
|
||||
if end_col > total_columns:
|
||||
end_col = total_columns
|
||||
# 选取当前组的30列(如果不足30列,按实际剩余列数选取)
|
||||
group_data = data.iloc[:, start_col:end_col]
|
||||
# 按行对当前组的列数据求和
|
||||
sum_per_row = group_data.sum(axis=1)
|
||||
# 计算平均(每一组的平均,每行都有一个平均结果)
|
||||
mean_per_row = sum_per_row / (end_col - start_col)
|
||||
# 生成新的列名,格式为'Mean_分组序号',例如'Mean_1'、'Mean_2'等
|
||||
new_column_name = f'Mean_{group_index}'
|
||||
group_index += 1
|
||||
# 将当前组计算得到的均值列添加到列表中
|
||||
mean_columns.append(mean_per_row)
|
||||
# 将所有的均值列合并为一个新的DataFrame(列方向合并)
|
||||
new_mean_df = pd.concat(mean_columns, axis=1)
|
||||
# 按行对new_mean_df所有列的数据进行求和,得到一个Series,索引与new_mean_df的索引一致,每个元素是每行的总和
|
||||
row_sums = new_mean_df.sum(axis=1)
|
||||
# 计算所有行总和的均值
|
||||
mean_value = row_sums.mean()
|
||||
# 设置中文字体为黑体,解决中文显示问题(Windows系统下),如果是其他系统或者有其他字体需求可适当调整
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
# 解决负号显示问题
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
# 提取月份作为x轴标签(假设mean_value的索引就是月份信息)
|
||||
months = mean_value.index.tolist()
|
||||
# 提取均值数据作为y轴数据
|
||||
energy_values = mean_value.tolist()
|
||||
# 创建图形和坐标轴对象
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
# 绘制折线图
|
||||
ax.plot(months, energy_values, marker='o', linestyle='-', color='b')
|
||||
# 设置坐标轴标签和标题
|
||||
ax.set_xlabel('月份')
|
||||
ax.set_ylabel('平均浮力频率')
|
||||
ax.set_title('每月浮力频率变化趋势')
|
||||
# 设置x轴刻度,让其旋转一定角度以便更好地显示所有月份标签,避免重叠
|
||||
plt.xticks(rotation=45)
|
||||
# 显示网格线,增强图表可读性
|
||||
ax.grid(True)
|
||||
# 显示图形
|
||||
plt.show()
|
||||
#--------------------------------绘制重力势能月统计图------------------------------
|
||||
# 获取总列数
|
||||
total_columns = data1.shape[1]
|
||||
# 用于存储每一组30列计算得到的均值列数据(最终会构成新的DataFrame)
|
||||
mean_columns = []
|
||||
# 分组序号,用于生成列名时区分不同的均值列,从1开始
|
||||
group_index = 1
|
||||
# 按照每30列一组进行划分(不滑动)
|
||||
for start_col in range(0, total_columns, 30):
|
||||
end_col = start_col + 30
|
||||
if end_col > total_columns:
|
||||
end_col = total_columns
|
||||
# 选取当前组的30列(如果不足30列,按实际剩余列数选取)
|
||||
group_data = data1.iloc[:, start_col:end_col]
|
||||
# 按行对当前组的列数据求和
|
||||
sum_per_row = group_data.sum(axis=1)
|
||||
# 计算平均(每一组的平均,每行都有一个平均结果)
|
||||
mean_per_row = sum_per_row / (end_col - start_col)
|
||||
# 生成新的列名,格式为'Mean_分组序号',例如'Mean_1'、'Mean_2'等
|
||||
new_column_name = f'Mean_{group_index}'
|
||||
group_index += 1
|
||||
# 将当前组计算得到的均值列添加到列表中
|
||||
mean_columns.append(mean_per_row)
|
||||
# 将所有的均值列合并为一个新的DataFrame(列方向合并)
|
||||
new_mean_df = pd.concat(mean_columns, axis=1)
|
||||
# 按行对new_mean_df所有列的数据进行求和,得到一个Series,索引与new_mean_df的索引一致,每个元素是每行的总和
|
||||
row_sums = new_mean_df.sum(axis=1)
|
||||
# 计算所有行总和的均值
|
||||
mean_value = row_sums.mean()
|
||||
# 设置中文字体为黑体,解决中文显示问题(Windows系统下),如果是其他系统或者有其他字体需求可适当调整
|
||||
plt.rcParams['font.sans-serif'] = ['SimHei']
|
||||
# 解决负号显示问题
|
||||
plt.rcParams['axes.unicode_minus'] = False
|
||||
# 提取月份作为x轴标签(假设mean_value的索引就是月份信息)
|
||||
months = mean_value.index.tolist()
|
||||
# 提取均值数据作为y轴数据
|
||||
energy_values = mean_value.tolist()
|
||||
# 创建图形和坐标轴对象
|
||||
fig, ax = plt.subplots(figsize=(10, 6))
|
||||
# 绘制折线图
|
||||
ax.plot(months, energy_values, marker='o', linestyle='-', color='b')
|
||||
# 设置坐标轴标签和标题
|
||||
ax.set_xlabel('月份')
|
||||
ax.set_ylabel('平均浮力频率')
|
||||
ax.set_title('每月浮力频率变化趋势')
|
||||
# 设置x轴刻度,让其旋转一定角度以便更好地显示所有月份标签,避免重叠
|
||||
plt.xticks(rotation=45)
|
||||
# 显示网格线,增强图表可读性
|
||||
ax.grid(True)
|
||||
# 显示图形
|
||||
plt.show()
|
||||
@ -3,6 +3,7 @@ from io import BytesIO
|
||||
from flask import Blueprint, request, send_file
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
from tidi.plot import TidiPlotv2
|
||||
from tidi.staged.plot import tidi_render
|
||||
|
||||
|
||||
@ -32,4 +33,28 @@ def render_wave():
|
||||
plt.savefig(buffer, format="png")
|
||||
buffer.seek(0)
|
||||
|
||||
return send_file(buffer, mimetype="image/png")
|
||||
return send_file(buffer, mimetype="image/png")
|
||||
|
||||
@tidi_module.route('/render/month_stats_v1')
|
||||
def render_stats_v1():
|
||||
year = request.args.get('year')
|
||||
year = int(year)
|
||||
|
||||
plotter = TidiPlotv2(year)
|
||||
plotter.plot_v1()
|
||||
buffer = BytesIO()
|
||||
plt.savefig(buffer, format="png")
|
||||
buffer.seek(0)
|
||||
return send_file(buffer, mimetype="image/png")
|
||||
|
||||
@tidi_module.route('/render/month_stats_v2')
|
||||
def render_stats_v2():
|
||||
year = request.args.get('year')
|
||||
year = int(year)
|
||||
|
||||
plotter = TidiPlotv2(year)
|
||||
plotter.plot_month()
|
||||
buffer = BytesIO()
|
||||
plt.savefig(buffer, format="png")
|
||||
buffer.seek(0)
|
||||
return send_file(buffer, mimetype="image/png")
|
||||
|
||||
1781
tidi/plot.py
1781
tidi/plot.py
File diff suppressed because it is too large
Load Diff
878
tidi/staged/plot_old.py
Normal file
878
tidi/staged/plot_old.py
Normal file
@ -0,0 +1,878 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from scipy.io import loadmat
|
||||
from scipy.optimize import curve_fit
|
||||
import matplotlib.pyplot as plt
|
||||
import seaborn as sns
|
||||
# ---------------------------------------------------------------------------------------
|
||||
# -----vzonal----------------------------------------------------------------------------
|
||||
|
||||
|
||||
def process_vzonal_day(day, year, ):
|
||||
try:
|
||||
# 读取数据
|
||||
height_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Height.mat")
|
||||
lat_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Lat.mat")
|
||||
lon_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Lon.mat")
|
||||
vmeridional_data = loadmat(
|
||||
rf"./tidi/data\{year}\{day:03d}_VMerdional.mat")
|
||||
vzonal_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Vzonal.mat")
|
||||
|
||||
# 将数据转换为DataFrame
|
||||
height_df = pd.DataFrame(height_data['Height'])
|
||||
lat_df = pd.DataFrame(lat_data['Lat'])
|
||||
lon_df = pd.DataFrame(lon_data['Lon'])
|
||||
vmeridional_df = pd.DataFrame(vmeridional_data['VMerdional'])
|
||||
vzonal_df = pd.DataFrame(vzonal_data['Vzonal'])
|
||||
# 将经纬度拼接为两列并添加到对应的DataFrame中
|
||||
lon_lat_df = pd.concat([lon_df, lat_df], axis=1)
|
||||
lon_lat_df.columns = ['Longitude', 'Latitude']
|
||||
# 筛选出10到30度纬度范围的数据
|
||||
lat_filter = (lat_df.values >= 0) & (lat_df.values <= 20)
|
||||
# 使用纬度范围过滤数据
|
||||
vmeridional_filtered = vmeridional_df.iloc[:, lat_filter.flatten()]
|
||||
vzonal_filtered = vzonal_df.iloc[:, lat_filter.flatten()]
|
||||
lon_lat_filtered = lon_lat_df.iloc[lat_filter.flatten(), :]
|
||||
# 接着对lon_lat_filtered的经度进行分组,0到360度每30度一个区间
|
||||
bins = range(0, 361, 30)
|
||||
group_labels = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||||
|
||||
lon_lat_filtered['Longitude_Group'] = pd.cut(
|
||||
lon_lat_filtered['Longitude'], bins=bins, labels=group_labels)
|
||||
|
||||
# 获取所有唯一的经度分组标签并按照数值顺序排序
|
||||
unique_groups = sorted(lon_lat_filtered['Longitude_Group'].unique(
|
||||
), key=lambda x: int(x.split('-')[0]))
|
||||
# 按照经度分组获取每个区间对应的vzonal_filtered、vmeridional_filtered数据
|
||||
grouped_data = {}
|
||||
insufficient_data_count = 0 # 用于计数数据不足的组数
|
||||
|
||||
for group in unique_groups:
|
||||
mask = lon_lat_filtered['Longitude_Group'] == group
|
||||
grouped_data[group] = {
|
||||
'vzonal_filtered': vzonal_filtered.loc[:, mask],
|
||||
'vmeridional_filtered': vmeridional_filtered.loc[:, mask],
|
||||
'lon_lat_filtered': lon_lat_filtered.loc[mask]
|
||||
}
|
||||
|
||||
# 计算有效值数量
|
||||
vzonal_count = grouped_data[group]['vzonal_filtered'].notna(
|
||||
).sum().sum()
|
||||
vmeridional_count = grouped_data[group]['vmeridional_filtered'].notna(
|
||||
).sum().sum()
|
||||
|
||||
if vzonal_count <= 20 or vmeridional_count <= 20:
|
||||
insufficient_data_count += 1
|
||||
|
||||
# 如果超过6组数据不足,则抛出错误
|
||||
if insufficient_data_count > 6:
|
||||
expected_length = 21
|
||||
return pd.Series(np.nan, index=range(expected_length))
|
||||
|
||||
# 如果代码运行到这里,说明所有分组的数据量都足够或者不足的组数不超过6
|
||||
print("所有分组的数据量都足够")
|
||||
# -----------计算w0------------------------------------------------------------------------------------------
|
||||
# 定义期望的12个区间的分组标签
|
||||
expected_groups = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||||
# 初始化一个空DataFrame来存储所有区间的均值廓线,列名设置为期望的分组标签
|
||||
W0_profiles_df = pd.DataFrame(columns=expected_groups)
|
||||
|
||||
# 遍历grouped_data字典中的每个组
|
||||
for group, data in grouped_data.items():
|
||||
# 提取当前组的vzonal_filtered数据
|
||||
vzonal_filtered = data['vzonal_filtered']
|
||||
# 计算有效数据的均值廓线,跳过NaN值
|
||||
mean_profile = vzonal_filtered.mean(axis=1, skipna=True)
|
||||
# 将当前组的均值廓线作为一列添加到W0_profiles_df DataFrame中
|
||||
W0_profiles_df[group] = mean_profile
|
||||
|
||||
# 检查并填充缺失的区间列,将缺失的列添加并填充为NaN
|
||||
for group in expected_groups:
|
||||
if group not in W0_profiles_df.columns:
|
||||
W0_profiles_df[group] = pd.Series(
|
||||
[float('NaN')] * len(W0_profiles_df))
|
||||
|
||||
# 打印拼接后的DataFrame以验证
|
||||
print("Concatenated mean profiles for all longitude groups:\n", W0_profiles_df)
|
||||
# 计算每个高度的均值
|
||||
height_mean_profiles = W0_profiles_df.mean(axis=1)
|
||||
# 将每个高度的均值作为新的一行添加到DataFrame中,All_Heights_Mean就是wn0
|
||||
W0_profiles_df['All_Heights_Mean'] = height_mean_profiles
|
||||
wn0_df = W0_profiles_df['All_Heights_Mean']
|
||||
# -------计算残余量--------------------------------------------------------------------------------------
|
||||
# 计算每个经度区间的残余值 (即每个区间的值减去该高度的All_Heights_Mean)
|
||||
residuals_df = W0_profiles_df.drop(columns='All_Heights_Mean').subtract(
|
||||
W0_profiles_df['All_Heights_Mean'], axis=0)
|
||||
|
||||
# --------wn1-------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 12 * x + phi) + C
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results = []
|
||||
for index, row in residuals_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results_df = pd.DataFrame(fit_results, columns=['A', 'phi', 'C'])
|
||||
print(fit_results_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn1_values = []
|
||||
for index, row in fit_results_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn1 = single_harmonic(x, A, phi, C)
|
||||
wn1_values.append(wn1)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn1_df = pd.DataFrame(wn1_values, columns=[
|
||||
f'wn1_{i}' for i in range(12)])
|
||||
print(wn1_df)
|
||||
# 如果wn1_df全为0,则跳过下面的计算,直接令该天的day_log_gwresult全部为NaN
|
||||
if (wn1_df == 0).all().all():
|
||||
return pd.Series(np.nan, index=range(21))
|
||||
# ------------计算temp-wn0-wn1---------------------------------------------------------
|
||||
temp_wn0_wn1 = residuals_df.values - wn1_df.values
|
||||
# 将结果转为 DataFrame
|
||||
temp_wn0_wn1_df = pd.DataFrame(
|
||||
temp_wn0_wn1, columns=residuals_df.columns, index=residuals_df.index)
|
||||
|
||||
# -------wn2--------------------------------------------------------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 6 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results2 = []
|
||||
for index, row in temp_wn0_wn1_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results2.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results2.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results2.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results2_df = pd.DataFrame(fit_results2, columns=['A', 'phi', 'C'])
|
||||
print(fit_results2_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn2_values = []
|
||||
for index, row in fit_results2_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn2 = single_harmonic(x, A, phi, C)
|
||||
wn2_values.append(wn2)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn2_df = pd.DataFrame(wn2_values, columns=[
|
||||
f'wn2_{i}' for i in range(12)])
|
||||
print(wn2_df)
|
||||
# ---------计算temp-wn0-wn1-wn2------------------------------------------------------
|
||||
temp_wn0_wn1_wn2 = temp_wn0_wn1_df.values - wn2_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_df = pd.DataFrame(
|
||||
temp_wn0_wn1_wn2, columns=temp_wn0_wn1_df.columns)
|
||||
|
||||
# -------wn3-----------------------------------------------------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 4 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results3 = []
|
||||
for index, row in temp_wn0_wn1_wn2_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results3.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results3.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results3.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results3_df = pd.DataFrame(fit_results3, columns=['A', 'phi', 'C'])
|
||||
print(fit_results3_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn3_values = []
|
||||
for index, row in fit_results3_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn3 = single_harmonic(x, A, phi, C)
|
||||
wn3_values.append(wn3)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn3_df = pd.DataFrame(wn3_values, columns=[
|
||||
f'wn3_{i}' for i in range(12)])
|
||||
print(wn3_df)
|
||||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||||
temp_wn0_wn1_wn2_wn3 = temp_wn0_wn1_wn2_df.values - wn3_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_wn3_df = pd.DataFrame(
|
||||
temp_wn0_wn1_wn2_wn3, columns=temp_wn0_wn1_wn2_df.columns)
|
||||
# -------wn4 - ----------------------------------------------------------------------
|
||||
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 3 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results4 = []
|
||||
for index, row in temp_wn0_wn1_wn2_wn3_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results4.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results4.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results4.append((0, 0, 0))
|
||||
|
||||
fit_results4_df = pd.DataFrame(fit_results4, columns=['A', 'phi', 'C'])
|
||||
print(fit_results4_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn4_values = []
|
||||
for index, row in fit_results4_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn4 = single_harmonic(x, A, phi, C)
|
||||
wn4_values.append(wn4)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn4_df = pd.DataFrame(wn4_values, columns=[
|
||||
f'wn4_{i}' for i in range(12)])
|
||||
print(wn4_df)
|
||||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||||
temp_wn0_wn1_wn2_wn3_wn4 = temp_wn0_wn1_wn2_wn3_df.values - wn4_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_wn3_wn4_df = pd.DataFrame(
|
||||
temp_wn0_wn1_wn2_wn3_wn4, columns=temp_wn0_wn1_wn2_wn3_df.columns)
|
||||
|
||||
# -------wn5-----------------------------------------------------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 2.4 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results5 = []
|
||||
for index, row in temp_wn0_wn1_wn2_wn3_wn4_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results5.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results5.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results5.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results5_df = pd.DataFrame(fit_results5, columns=['A', 'phi', 'C'])
|
||||
print(fit_results5_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn5_values = []
|
||||
for index, row in fit_results5_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn5 = single_harmonic(x, A, phi, C)
|
||||
wn5_values.append(wn5)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn5_df = pd.DataFrame(wn5_values, columns=[
|
||||
f'wn5_{i}' for i in range(12)])
|
||||
print(wn5_df)
|
||||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||||
temp_wn0_wn1_wn2_wn3_wn4_wn5 = temp_wn0_wn1_wn2_wn3_wn4_df.values - wn5_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_wn3_wn4_wn5_df = pd.DataFrame(temp_wn0_wn1_wn2_wn3_wn4_wn5,
|
||||
columns=temp_wn0_wn1_wn2_wn3_wn4_df.columns)
|
||||
|
||||
# ------计算背景温度=wn0+wn1+wn2+wn3+wn4+wn5---------------------------------------------------
|
||||
background = wn5_df.values + wn4_df.values + \
|
||||
wn3_df.values + wn2_df.values + wn1_df.values
|
||||
# wn0只有一列单独处理相加
|
||||
# 使用 np.isnan 和 np.where 来判断是否为 NaN 或 0,避免这些值参与相加
|
||||
for i in range(21):
|
||||
wn0_value = wn0_df.iloc[i]
|
||||
# 只有当 wn0_value 既不是 NaN 也不是 0 时才加到 background 上
|
||||
if not np.isnan(wn0_value) and wn0_value != 0:
|
||||
background[i, :] += wn0_value
|
||||
# 扰动
|
||||
perturbation = temp_wn0_wn1_wn2_wn3_wn4_wn5_df
|
||||
# ---------傅里叶变换----------------------------------------------------------------------
|
||||
# 初始化一个新的DataFrame来保存处理结果
|
||||
result = pd.DataFrame(
|
||||
np.nan, index=perturbation.index, columns=perturbation.columns)
|
||||
# 定义滤波范围
|
||||
lambda_low = 2 # 2 km
|
||||
lambda_high = 15 # 15 km
|
||||
f_low = 2 * np.pi / lambda_high
|
||||
f_high = 2 * np.pi / lambda_low
|
||||
|
||||
# 循环处理perturbation中的每一列
|
||||
for col in perturbation.columns:
|
||||
x = perturbation[col]
|
||||
# 提取有效值
|
||||
valid_values = x.dropna()
|
||||
N = len(valid_values) # 有效值的数量
|
||||
|
||||
# 找到第一个有效值的索引
|
||||
first_valid_index = valid_values.index[0] if not valid_values.index.empty else None
|
||||
height_value = height_df.loc[first_valid_index] if first_valid_index is not None else None
|
||||
|
||||
# 如果有效值为空,则跳过该列
|
||||
if N == 0 or height_value is None:
|
||||
continue
|
||||
|
||||
# 时间序列和频率
|
||||
dt = 0.25
|
||||
n = np.arange(N)
|
||||
t = height_value.values + n * dt
|
||||
f = n / (N * dt)
|
||||
|
||||
# 傅里叶变换
|
||||
y = np.fft.fft(valid_values.values)
|
||||
|
||||
# 频率滤波
|
||||
yy = y.copy()
|
||||
freq_filter = (f < f_low) | (f > f_high)
|
||||
yy[freq_filter] = 0 # 过滤掉指定频段
|
||||
|
||||
# 逆傅里叶变换
|
||||
perturbation_after = np.real(np.fft.ifft(yy))
|
||||
|
||||
# 将处理结果插回到result矩阵中
|
||||
result.loc[valid_values.index, col] = perturbation_after
|
||||
u2 = result ** 2
|
||||
u2 = u2.mean(axis=1)
|
||||
return u2
|
||||
except FileNotFoundError:
|
||||
# 如果文件不存在,返回全NaN的Series
|
||||
expected_length = 21
|
||||
return pd.Series(np.nan, index=range(expected_length))
|
||||
|
||||
|
||||
# -------------------------------------------------------------------------------------------
|
||||
# --------meridional-------------------------------------------------------------------------
|
||||
def process_vmeridional_day(day, year):
|
||||
try:
|
||||
# 读取数据
|
||||
height_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Height.mat")
|
||||
lat_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Lat.mat")
|
||||
lon_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Lon.mat")
|
||||
vmeridional_data = loadmat(
|
||||
rf"./tidi/data\{year}\{day:03d}_VMerdional.mat")
|
||||
vzonal_data = loadmat(rf"./tidi/data\{year}\{day:03d}_Vzonal.mat")
|
||||
|
||||
# 将数据转换为DataFrame
|
||||
height_df = pd.DataFrame(height_data['Height'])
|
||||
lat_df = pd.DataFrame(lat_data['Lat'])
|
||||
lon_df = pd.DataFrame(lon_data['Lon'])
|
||||
vmeridional_df = pd.DataFrame(vmeridional_data['VMerdional'])
|
||||
vzonal_df = pd.DataFrame(vzonal_data['Vzonal'])
|
||||
# 将经纬度拼接为两列并添加到对应的DataFrame中
|
||||
lon_lat_df = pd.concat([lon_df, lat_df], axis=1)
|
||||
lon_lat_df.columns = ['Longitude', 'Latitude']
|
||||
# 筛选出10到30度纬度范围的数据
|
||||
lat_filter = (lat_df.values >= 0) & (lat_df.values <= 20)
|
||||
# 使用纬度范围过滤数据
|
||||
vmeridional_filtered = vmeridional_df.iloc[:, lat_filter.flatten()]
|
||||
vzonal_filtered = vzonal_df.iloc[:, lat_filter.flatten()]
|
||||
lon_lat_filtered = lon_lat_df.iloc[lat_filter.flatten(), :]
|
||||
# 接着对lon_lat_filtered的经度进行分组,0到360度每30度一个区间
|
||||
bins = range(0, 361, 30)
|
||||
group_labels = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||||
|
||||
lon_lat_filtered['Longitude_Group'] = pd.cut(
|
||||
lon_lat_filtered['Longitude'], bins=bins, labels=group_labels)
|
||||
|
||||
# 获取所有唯一的经度分组标签并按照数值顺序排序
|
||||
unique_groups = sorted(lon_lat_filtered['Longitude_Group'].unique(
|
||||
), key=lambda x: int(x.split('-')[0]))
|
||||
# 按照经度分组获取每个区间对应的vzonal_filtered、vmeridional_filtered数据
|
||||
grouped_data = {}
|
||||
insufficient_data_count = 0 # 用于计数数据不足的组数
|
||||
|
||||
for group in unique_groups:
|
||||
mask = lon_lat_filtered['Longitude_Group'] == group
|
||||
grouped_data[group] = {
|
||||
'vzonal_filtered': vzonal_filtered.loc[:, mask],
|
||||
'vmeridional_filtered': vmeridional_filtered.loc[:, mask],
|
||||
'lon_lat_filtered': lon_lat_filtered.loc[mask]
|
||||
}
|
||||
|
||||
# 计算有效值数量
|
||||
vzonal_count = grouped_data[group]['vzonal_filtered'].notna(
|
||||
).sum().sum()
|
||||
vmeridional_count = grouped_data[group]['vmeridional_filtered'].notna(
|
||||
).sum().sum()
|
||||
|
||||
if vzonal_count <= 20 or vmeridional_count <= 20:
|
||||
insufficient_data_count += 1
|
||||
|
||||
# 如果超过6组数据不足,则抛出错误
|
||||
if insufficient_data_count > 6:
|
||||
expected_length = 21
|
||||
return pd.Series(np.nan, index=range(expected_length))
|
||||
|
||||
# 如果代码运行到这里,说明所有分组的数据量都足够或者不足的组数不超过6
|
||||
print("所有分组的数据量都足够")
|
||||
# -----------计算w0------------------------------------------------------------------------------------------
|
||||
# 定义期望的12个区间的分组标签
|
||||
expected_groups = [f"{i}-{i + 29}" for i in range(0, 360, 30)]
|
||||
# 初始化一个空DataFrame来存储所有区间的均值廓线,列名设置为期望的分组标签
|
||||
W0_profiles_df = pd.DataFrame(columns=expected_groups)
|
||||
|
||||
# 遍历grouped_data字典中的每个组
|
||||
for group, data in grouped_data.items():
|
||||
# 提取当前组的vzonal_filtered数据
|
||||
vmeridional_filtered = data['vmeridional_filtered']
|
||||
# 计算有效数据的均值廓线,跳过NaN值
|
||||
mean_profile = vmeridional_filtered.mean(axis=1, skipna=True)
|
||||
# 将当前组的均值廓线作为一列添加到W0_profiles_df DataFrame中
|
||||
W0_profiles_df[group] = mean_profile
|
||||
|
||||
# 检查并填充缺失的区间列,将缺失的列添加并填充为NaN
|
||||
for group in expected_groups:
|
||||
if group not in W0_profiles_df.columns:
|
||||
W0_profiles_df[group] = pd.Series(
|
||||
[float('NaN')] * len(W0_profiles_df))
|
||||
|
||||
# 打印拼接后的DataFrame以验证
|
||||
print("Concatenated mean profiles for all longitude groups:\n", W0_profiles_df)
|
||||
# 计算每个高度的均值
|
||||
height_mean_profiles = W0_profiles_df.mean(axis=1)
|
||||
# 将每个高度的均值作为新的一行添加到DataFrame中,All_Heights_Mean就是wn0
|
||||
W0_profiles_df['All_Heights_Mean'] = height_mean_profiles
|
||||
wn0_df = W0_profiles_df['All_Heights_Mean']
|
||||
# -------计算残余量--------------------------------------------------------------------------------------
|
||||
# 计算每个经度区间的残余值 (即每个区间的值减去该高度的All_Heights_Mean)
|
||||
residuals_df = W0_profiles_df.drop(columns='All_Heights_Mean').subtract(
|
||||
W0_profiles_df['All_Heights_Mean'], axis=0)
|
||||
|
||||
# --------wn1-------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 12 * x + phi) + C
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results = []
|
||||
for index, row in residuals_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results_df = pd.DataFrame(fit_results, columns=['A', 'phi', 'C'])
|
||||
print(fit_results_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn1_values = []
|
||||
for index, row in fit_results_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn1 = single_harmonic(x, A, phi, C)
|
||||
wn1_values.append(wn1)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn1_df = pd.DataFrame(wn1_values, columns=[
|
||||
f'wn1_{i}' for i in range(12)])
|
||||
print(wn1_df)
|
||||
# 如果wn1_df全为0,则跳过下面的计算,直接令该天的day_log_gwresult全部为NaN
|
||||
if (wn1_df == 0).all().all():
|
||||
return pd.Series(np.nan, index=range(21))
|
||||
# ------------计算temp-wn0-wn1---------------------------------------------------------
|
||||
temp_wn0_wn1 = residuals_df.values - wn1_df.values
|
||||
# 将结果转为 DataFrame
|
||||
temp_wn0_wn1_df = pd.DataFrame(
|
||||
temp_wn0_wn1, columns=residuals_df.columns, index=residuals_df.index)
|
||||
|
||||
# -------wn2--------------------------------------------------------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 6 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results2 = []
|
||||
for index, row in temp_wn0_wn1_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results2.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results2.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results2.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results2_df = pd.DataFrame(fit_results2, columns=['A', 'phi', 'C'])
|
||||
print(fit_results2_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn2_values = []
|
||||
for index, row in fit_results2_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn2 = single_harmonic(x, A, phi, C)
|
||||
wn2_values.append(wn2)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn2_df = pd.DataFrame(wn2_values, columns=[
|
||||
f'wn2_{i}' for i in range(12)])
|
||||
print(wn2_df)
|
||||
# ---------计算temp-wn0-wn1-wn2------------------------------------------------------
|
||||
temp_wn0_wn1_wn2 = temp_wn0_wn1_df.values - wn2_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_df = pd.DataFrame(
|
||||
temp_wn0_wn1_wn2, columns=temp_wn0_wn1_df.columns)
|
||||
|
||||
# -------wn3-----------------------------------------------------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 4 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results3 = []
|
||||
for index, row in temp_wn0_wn1_wn2_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results3.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results3.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results3.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results3_df = pd.DataFrame(fit_results3, columns=['A', 'phi', 'C'])
|
||||
print(fit_results3_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn3_values = []
|
||||
for index, row in fit_results3_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn3 = single_harmonic(x, A, phi, C)
|
||||
wn3_values.append(wn3)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn3_df = pd.DataFrame(wn3_values, columns=[
|
||||
f'wn3_{i}' for i in range(12)])
|
||||
print(wn3_df)
|
||||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||||
temp_wn0_wn1_wn2_wn3 = temp_wn0_wn1_wn2_df.values - wn3_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_wn3_df = pd.DataFrame(
|
||||
temp_wn0_wn1_wn2_wn3, columns=temp_wn0_wn1_wn2_df.columns)
|
||||
# -------wn4 - ----------------------------------------------------------------------
|
||||
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 3 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results4 = []
|
||||
for index, row in temp_wn0_wn1_wn2_wn3_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results4.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results4.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results4.append((0, 0, 0))
|
||||
|
||||
fit_results4_df = pd.DataFrame(fit_results4, columns=['A', 'phi', 'C'])
|
||||
print(fit_results4_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn4_values = []
|
||||
for index, row in fit_results4_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn4 = single_harmonic(x, A, phi, C)
|
||||
wn4_values.append(wn4)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn4_df = pd.DataFrame(wn4_values, columns=[
|
||||
f'wn4_{i}' for i in range(12)])
|
||||
print(wn4_df)
|
||||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||||
temp_wn0_wn1_wn2_wn3_wn4 = temp_wn0_wn1_wn2_wn3_df.values - wn4_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_wn3_wn4_df = pd.DataFrame(
|
||||
temp_wn0_wn1_wn2_wn3_wn4, columns=temp_wn0_wn1_wn2_wn3_df.columns)
|
||||
|
||||
# -------wn5-----------------------------------------------------------------------
|
||||
def single_harmonic(x, A, phi, C):
|
||||
return A * np.sin(2 * np.pi / 2.4 * x + phi) + C
|
||||
|
||||
# 用于存储每个高度拟合后的参数结果
|
||||
fit_results5 = []
|
||||
for index, row in temp_wn0_wn1_wn2_wn3_wn4_df.iterrows():
|
||||
# 检查该行是否存在NaN值,如果有则跳过拟合,直接将参数设为0
|
||||
if row.isnull().any():
|
||||
fit_results5.append((0, 0, 0))
|
||||
continue
|
||||
x = np.arange(12) # 对应12个位置作为自变量
|
||||
y = row.values
|
||||
try:
|
||||
# 进行曲线拟合
|
||||
popt, _ = curve_fit(single_harmonic, x, y)
|
||||
fit_results5.append(popt)
|
||||
except RuntimeError:
|
||||
# 如果拟合过程出现问题(例如无法收敛等),也将参数设为0
|
||||
fit_results5.append((0, 0, 0))
|
||||
# 将拟合结果转换为DataFrame
|
||||
fit_results5_df = pd.DataFrame(fit_results5, columns=['A', 'phi', 'C'])
|
||||
print(fit_results5_df)
|
||||
# 用于存储每个高度的拟合值
|
||||
wn5_values = []
|
||||
for index, row in fit_results5_df.iterrows():
|
||||
A, phi, C = row
|
||||
x = np.arange(12) # 同样对应12个位置作为自变量
|
||||
wn5 = single_harmonic(x, A, phi, C)
|
||||
wn5_values.append(wn5)
|
||||
# 将拟合值转换为DataFrame
|
||||
wn5_df = pd.DataFrame(wn5_values, columns=[
|
||||
f'wn5_{i}' for i in range(12)])
|
||||
print(wn5_df)
|
||||
# ---------计算temp-wn0-wn1-wn2-wn3------------------------------------------------------
|
||||
temp_wn0_wn1_wn2_wn3_wn4_wn5 = temp_wn0_wn1_wn2_wn3_wn4_df.values - wn5_df.values
|
||||
# 转换为 DataFrame
|
||||
temp_wn0_wn1_wn2_wn3_wn4_wn5_df = pd.DataFrame(temp_wn0_wn1_wn2_wn3_wn4_wn5,
|
||||
columns=temp_wn0_wn1_wn2_wn3_wn4_df.columns)
|
||||
|
||||
# ------计算背景温度=wn0+wn1+wn2+wn3+wn4+wn5---------------------------------------------------
|
||||
background = wn5_df.values + wn4_df.values + \
|
||||
wn3_df.values + wn2_df.values + wn1_df.values
|
||||
# wn0只有一列单独处理相加
|
||||
# 使用 np.isnan 和 np.where 来判断是否为 NaN 或 0,避免这些值参与相加
|
||||
for i in range(21):
|
||||
wn0_value = wn0_df.iloc[i]
|
||||
# 只有当 wn0_value 既不是 NaN 也不是 0 时才加到 background 上
|
||||
if not np.isnan(wn0_value) and wn0_value != 0:
|
||||
background[i, :] += wn0_value
|
||||
# 扰动
|
||||
perturbation = temp_wn0_wn1_wn2_wn3_wn4_wn5_df
|
||||
# ---------傅里叶变换----------------------------------------------------------------------
|
||||
# 初始化一个新的DataFrame来保存处理结果
|
||||
result = pd.DataFrame(
|
||||
np.nan, index=perturbation.index, columns=perturbation.columns)
|
||||
# 定义滤波范围
|
||||
lambda_low = 2 # 2 km
|
||||
lambda_high = 15 # 15 km
|
||||
f_low = 2 * np.pi / lambda_high
|
||||
f_high = 2 * np.pi / lambda_low
|
||||
|
||||
# 循环处理perturbation中的每一列
|
||||
for col in perturbation.columns:
|
||||
x = perturbation[col]
|
||||
# 提取有效值
|
||||
valid_values = x.dropna()
|
||||
N = len(valid_values) # 有效值的数量
|
||||
|
||||
# 找到第一个有效值的索引
|
||||
first_valid_index = valid_values.index[0] if not valid_values.index.empty else None
|
||||
height_value = height_df.loc[first_valid_index] if first_valid_index is not None else None
|
||||
|
||||
# 如果有效值为空,则跳过该列
|
||||
if N == 0 or height_value is None:
|
||||
continue
|
||||
|
||||
# 时间序列和频率
|
||||
dt = 0.25
|
||||
n = np.arange(N)
|
||||
t = height_value.values + n * dt
|
||||
f = n / (N * dt)
|
||||
|
||||
# 傅里叶变换
|
||||
y = np.fft.fft(valid_values.values)
|
||||
|
||||
# 频率滤波
|
||||
yy = y.copy()
|
||||
freq_filter = (f < f_low) | (f > f_high)
|
||||
yy[freq_filter] = 0 # 过滤掉指定频段
|
||||
|
||||
# 逆傅里叶变换
|
||||
perturbation_after = np.real(np.fft.ifft(yy))
|
||||
|
||||
# 将处理结果插回到result矩阵中
|
||||
result.loc[valid_values.index, col] = perturbation_after
|
||||
v2 = result ** 2
|
||||
v2 = v2.mean(axis=1)
|
||||
return v2
|
||||
except FileNotFoundError:
|
||||
# 如果文件不存在,返回全NaN的Series
|
||||
expected_length = 21
|
||||
return pd.Series(np.nan, index=range(expected_length))
|
||||
# 初始化一个空的DataFrame来存储所有天的结果
|
||||
|
||||
|
||||
# 初始化一个空的DataFrame来存储所有天的结果
|
||||
all_days_vzonal_results = pd.DataFrame()
|
||||
|
||||
# 循环处理每一天的数据
|
||||
for day in range(1, 365):
|
||||
u2 = process_vzonal_day(day, 2019)
|
||||
if u2 is not None:
|
||||
all_days_vzonal_results[rf"{day:02d}"] = u2
|
||||
|
||||
# 将结果按列拼接
|
||||
# all_days_vzonal_results.columns = [f"{day:02d}" for day in range(1, 365)]
|
||||
|
||||
all_days_vmeridional_results = pd.DataFrame()
|
||||
|
||||
# 循环处理每一天的数据
|
||||
for day in range(1, 365):
|
||||
v2 = process_vmeridional_day(day, 2019)
|
||||
if v2 is not None:
|
||||
all_days_vmeridional_results[rf"{day:02d}"] = v2
|
||||
|
||||
# 将结果按列拼接
|
||||
# all_days_vmeridional_results.columns = [f"{day:02d}" for day in range(1, 365)]
|
||||
|
||||
# ---------------------------------------------------------------------------------------------------
|
||||
# --------经纬向风平方和计算动能--------------------------------------------------------------------------------
|
||||
|
||||
# 使用numpy.where来检查两个表格中的对应元素是否都不是NaN
|
||||
sum_df = np.where(
|
||||
pd.notna(all_days_vmeridional_results) & pd.notna(all_days_vzonal_results),
|
||||
all_days_vmeridional_results + all_days_vzonal_results,
|
||||
np.nan
|
||||
)
|
||||
HP = 1/2*all_days_vmeridional_results+1/2*all_days_vzonal_results
|
||||
heights = [70.0, 72.5, 75.0, 77.5, 80.0, 82.5, 85.0, 87.5, 90.0, 92.5,
|
||||
95.0, 97.5, 100.0, 102.5, 105.0, 107.5, 110.0, 112.5, 115.0, 117.5, 120.0]
|
||||
HP.index = heights
|
||||
# # 将 DataFrame 保存为 Excel 文件
|
||||
# HP.to_excel('HP_data.xlsx')
|
||||
# ----------绘年统计图------------------------------------------------------------------------------------------------------------
|
||||
data = HP
|
||||
# 使用 reset_index() 方法将索引变为第一列
|
||||
data = data.reset_index()
|
||||
h = data.iloc[:, 0].copy() # 高度,保留作为纵坐标
|
||||
dates = list(range(1, data.shape[1])) # 日期,作为横坐标
|
||||
data0 = data.iloc[:, 1:].copy() # 绘图数据
|
||||
'''数据处理'''
|
||||
# 反转 h 以确保高度从下往上递增
|
||||
h_reversed = h[::-1].reset_index(drop=True)
|
||||
data0_reversed = data0[::-1].reset_index(drop=True)
|
||||
# 将数值大于20的数据点替换为nan
|
||||
data0_reversed[data0_reversed > 20] = float('nan')
|
||||
# 转换成月份,365天
|
||||
days_in_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
|
||||
# 将日期转换为英文月份
|
||||
|
||||
|
||||
def day_to_month(day):
|
||||
# 累积每个月的天数,找到对应的月份
|
||||
cumulative_days = 0
|
||||
for i, days in enumerate(days_in_month):
|
||||
cumulative_days += days
|
||||
if day <= cumulative_days:
|
||||
return f'{["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"][i]}'
|
||||
|
||||
|
||||
months = [day_to_month(day) for day in dates]
|
||||
|
||||
|
||||
'''绘图'''
|
||||
plt.rcParams['font.family'] = 'SimSun' # 宋体
|
||||
plt.rcParams['font.size'] = 12 # 中文字号
|
||||
plt.rcParams['axes.unicode_minus'] = False # 正确显示负号
|
||||
plt.rcParams['font.sans-serif'] = 'Times New Roman' # 新罗马
|
||||
plt.rcParams['axes.labelsize'] = 14 # 坐标轴标签字号
|
||||
plt.rcParams['xtick.labelsize'] = 12 # x轴刻度字号
|
||||
plt.rcParams['ytick.labelsize'] = 12 # y轴刻度字号
|
||||
plt.rcParams['legend.fontsize'] = 16 # 图例字号
|
||||
plt.rcParams['axes.unicode_minus'] = False # 正确显示负号
|
||||
plt.figure(figsize=(10, 6)) # 设置图像大小
|
||||
# 绘制热力图,设置 x 和 y 轴的标签
|
||||
sns.heatmap(data0_reversed, annot=False, cmap='YlGnBu', linewidths=0.5,
|
||||
yticklabels=h_reversed, xticklabels=months, cbar_kws={'label': ' Gravitational potential energy'})
|
||||
|
||||
# 横坐标过长,设置等间隔展示
|
||||
interval = 34 # 横坐标显示间隔
|
||||
plt.xticks(ticks=range(0, len(dates), interval),
|
||||
labels=months[::interval], rotation=45) # rotation旋转可不加
|
||||
|
||||
# 添加轴标签
|
||||
plt.xlabel('Month') # X轴标签
|
||||
plt.ylabel('Height') # Y轴标签
|
||||
|
||||
# 显示图形
|
||||
plt.show()
|
||||
# --------------绘制月统计图-------------------------------------------------------------------
|
||||
# 获取HP的列数
|
||||
num_cols = HP.shape[1]
|
||||
# 用于存储按要求计算出的均值列数据
|
||||
mean_cols = []
|
||||
start = 0
|
||||
while start < num_cols:
|
||||
end = start + 30
|
||||
if end > num_cols:
|
||||
end = num_cols
|
||||
# 提取每30列(或不满30列的剩余部分)的数据
|
||||
subset = HP.iloc[:, start:end]
|
||||
# 计算该部分数据每一行的均值,得到一个Series,作为新的均值列
|
||||
mean_series = subset.mean(axis=1)
|
||||
mean_cols.append(mean_series)
|
||||
start = end
|
||||
# 将所有的均值列合并成一个新的DataFrame
|
||||
result_df = pd.concat(mean_cols, axis=1)
|
||||
# 对result_df中的每一个元素取自然对数
|
||||
result_df_log = result_df.applymap(lambda x: np.log(x))
|
||||
# 通过drop方法删除第一行,axis=0表示按行操作,inplace=True表示直接在原DataFrame上修改(若不想修改原DataFrame可设置为False)
|
||||
result_df_log.drop(70, axis=0, inplace=True)
|
||||
# 计算每个月的平均值
|
||||
monthly_average = result_df_log.mean(axis=0)
|
||||
# 将结果转换为 (1, 12) 形状
|
||||
monthly_average = monthly_average.values.reshape(1, 12)
|
||||
monthly_average = monthly_average.ravel()
|
||||
|
||||
# 生成x轴的月份标签
|
||||
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
||||
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
|
||||
|
||||
# 绘制折线图
|
||||
plt.plot(months, monthly_average, marker='o', linestyle='-', color='b')
|
||||
|
||||
# 添加标题和标签
|
||||
plt.title("Monthly Average ENERGY(log)")
|
||||
plt.xlabel("Month")
|
||||
plt.ylabel("Average Energy")
|
||||
# 显示图表
|
||||
plt.xticks(rotation=45) # 让月份标签更清晰可读
|
||||
plt.grid(True)
|
||||
plt.tight_layout()
|
||||
# 显示图形
|
||||
plt.show()
|
||||
Loading…
x
Reference in New Issue
Block a user