47 lines
1.1 KiB
YAML
47 lines
1.1 KiB
YAML
# SAM2 LoRA Fine-tuning Configuration
|
|
|
|
model:
|
|
checkpoint: ../sam2/checkpoints/sam2.1_hiera_small.pt
|
|
config: sam2.1_hiera_s.yaml
|
|
|
|
data:
|
|
root: ./crack500
|
|
train_file: ./crack500/train.txt
|
|
val_file: ./crack500/val.txt
|
|
test_file: ./crack500/test.txt
|
|
expand_ratio: 0.05 # Bbox expansion ratio
|
|
|
|
training:
|
|
epochs: 50
|
|
batch_size: 4
|
|
learning_rate: 0.0001 # 1e-4
|
|
weight_decay: 0.01
|
|
gradient_accumulation_steps: 4
|
|
|
|
# Early stopping
|
|
patience: 10
|
|
|
|
# Loss weights
|
|
dice_weight: 0.5
|
|
focal_weight: 0.5
|
|
use_skeleton_loss: true
|
|
skeleton_weight: 0.2
|
|
|
|
lora:
|
|
strategy: B # A (decoder-only), B (decoder+encoder), C (full)
|
|
|
|
system:
|
|
num_workers: 4
|
|
use_amp: true # Mixed precision training
|
|
save_freq: 5 # Save checkpoint every N epochs
|
|
|
|
wandb:
|
|
use_wandb: false
|
|
project: sam2-crack-lora
|
|
entity: null
|
|
|
|
# Strategy-specific recommendations:
|
|
# Strategy A: batch_size=8, gradient_accumulation_steps=2, lr=1e-4, epochs=30
|
|
# Strategy B: batch_size=4, gradient_accumulation_steps=4, lr=5e-5, epochs=50
|
|
# Strategy C: batch_size=2, gradient_accumulation_steps=8, lr=3e-5, epochs=80
|