# SAM2 LoRA Fine-tuning Configuration model: checkpoint: ../sam2/checkpoints/sam2.1_hiera_small.pt config: sam2.1_hiera_s.yaml data: root: ./crack500 train_file: ./crack500/train.txt val_file: ./crack500/val.txt test_file: ./crack500/test.txt expand_ratio: 0.05 # Bbox expansion ratio training: epochs: 50 batch_size: 4 learning_rate: 0.0001 # 1e-4 weight_decay: 0.01 gradient_accumulation_steps: 4 # Early stopping patience: 10 # Loss weights dice_weight: 0.5 focal_weight: 0.5 use_skeleton_loss: true skeleton_weight: 0.2 lora: strategy: B # A (decoder-only), B (decoder+encoder), C (full) system: num_workers: 4 use_amp: true # Mixed precision training save_freq: 5 # Save checkpoint every N epochs wandb: use_wandb: false project: sam2-crack-lora entity: null # Strategy-specific recommendations: # Strategy A: batch_size=8, gradient_accumulation_steps=2, lr=1e-4, epochs=30 # Strategy B: batch_size=4, gradient_accumulation_steps=4, lr=5e-5, epochs=50 # Strategy C: batch_size=2, gradient_accumulation_steps=8, lr=3e-5, epochs=80