#import "@preview/postercise:0.2.0": * #import themes.boxes: * #import "@preview/fletcher:0.5.8" as fletcher: diagram, edge, node #set page(width: 16in, height: 22in) #set text(size: 16pt) #show: theme.with( primary-color: rgb(28, 55, 103), // Dark blue background-color: white, accent-color: rgb(243, 163, 30), // Yellow titletext-color: white, titletext-size: 1.8em, ) #poster-header( title: [Can SAM "Segment Anything"? #linebreak() ], subtitle: [Evaluating Zero-Shot Performance on Crack Detection], authors: [Hanwen Yu], affiliation: [School of Advanced Technology, Supervisor: SiYue Yu ], logo-2: image("./img/xjtlu-o.png", width: 15em), ) // #image("examples.png", width: 100%) #poster-content(col: 3)[ // Content goes here #normal-box(color: none)[ == Introduction he Segment Anything Model (SAM) has demonstrated remarkable zero-shot segmentation capabilities on natural images. However, its zero-shot performance on domain-specific tasks remains underexplored. // WHY CRACK SEGMENTATION? // • Critical for infrastructure safety monitoring // • Challenging characteristics: // - Thin, elongated structures (often 1-5 pixels wide) // - Low contrast against background // - Complex branching topology // RESEARCH QUESTION *Can SAM2 achieve competitive crack segmentation performance without domain-specific training?* // CONTRIBUTIONS // • First systematic evaluation of SAM2 zero-shot capability // on crack segmentation // • Comprehensive comparison of prompt strategies // (bounding box vs. point-based prompts) // • Analysis of failure modes and practical limitations ] #normal-box(color: none)[ == Methodology *Dataset* - Crack500: 500 images with pixel-wise annotations - Test set: 100 images for evaluation *Prompt Strategies* We evaluate four prompt generation approaches: #table( columns: 2, [Prompt Type], [Description], [Bounding Box], [Tight box around ground truth mask], [1-Point Prompt], [Single point sampled from GT skeleton (morphological center)], [3-Point Prompt], [Three uniformly distributed points along GT skeleton], [5-Point Prompt], [Five uniformly distributed points along GT skeleton], ) *Evaluation* $ "IoU" = "TP" / ("TP" + "FP" + "FN") $ $ "F1" = 2 * ("Precision" * "Recall") / ("Precision" + "Recall") $ *Baselines* Supervised models: UNet, DeepCrack, TransUNet, CT-CrackSeg, VM-UNet, CrackSegMamba #import fletcher.shapes: brace, diamond, hexagon, parallelogram, pill #set text(size: 16pt) #diagram( node-fill: gradient.radial(white, blue, radius: 200%), node-stroke: blue, spacing: 25pt, ( node((0, 0), [Crack Image], shape: rect), node((0, 1), [SAM Image Encoder], shape: rect), node((0, 2), [Prompt Generation #linebreak() BBox, 1/3/5 points], shape: rect), node((1, 2), [SAM Mask Decoder], shape: rect), node((1, 1), [Predircted Mask], shape: rect), node((1, 0), [Metrics (IoU, F1)], shape: rect), ) .intersperse(edge("-|>")) .join(), ) ] #normal-box(color: none)[ == Experiments and Results #image("img/examples.png") #image("img/metrics.png") #image("img/sam_iou.png") #image("img/sam_f1.png") ] #normal-box(color: none)[ == Qualitative Analysis #image("img/fail1.png") #image("img/fail2.png") ] #normal-box(color: none)[ == Key Findings and Discussion // *Prompt Effectiveness* Bounding box prompts yield the best performance among zero-shot methods. There is a 4.7x performance gap between bbox(39.6% IoU) and 1-point prompts(8.4% IoU). SAM2 with bbox prompts (39.6% IoU) lags behind supervised models, even UNet in 2015. which highlights limitations of zero-shot approach without fine-tuning. // *Single Point Prompt Limitations* 1-point prompts perform poorly (12.3% IoU), indicating insufficient guidance for complex crack structures. 5-point prompts approach bbox performance for highly irregular cracks, suggesting multiple points help capture shape. ] #normal-box(color: none)[ == Conclusion and Future Work SAM2 shows limited zero-shot capability for crack segmentation. Bounding box prompts significantly outperform point-based prompts. Performance still lags behind supervised methods, indicating need for domain adaptation. ] #poster-footer[ // Content Hanwen Yu | Email: Hanwen.Yu24\@student.xjtlu.edu.cn ] ]