fix: correct some info
This commit is contained in:
parent
911df69b2a
commit
2b7b21416c
@ -61,7 +61,7 @@ Given a point cloud *$P = \{p_1, p_2, dots, p_n\}$*
|
|||||||
|
|
||||||
where each point *$p_i in RR^3$* represents a 3D coordinate in the railway environment,
|
where each point *$p_i in RR^3$* represents a 3D coordinate in the railway environment,
|
||||||
|
|
||||||
our task is to assign each point a semantic label *$l_i in \{0, 1, dots, C-1\}$*
|
Our task is to assign each point a semantic label *$l_i in \{0, 1, dots, C-1\}$*
|
||||||
|
|
||||||
where *$C = 13$* represents our predefined classes.
|
where *$C = 13$* represents our predefined classes.
|
||||||
|
|
||||||
@ -77,7 +77,7 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
#v(1em)
|
#v(1em)
|
||||||
#text(size: 1.2em, weight: "bold")[Pilot Study Aims]
|
#text(size: 1.2em, weight: "bold")[Pilot Study Aims]
|
||||||
|
|
||||||
- Establish baseline performance using RandLA-Net
|
- Establish *baseline* performance using RandLA-Net
|
||||||
- Evaluate feasibility of detecting extremely rare objects (0.001% of data)
|
- Evaluate feasibility of detecting extremely rare objects (0.001% of data)
|
||||||
|
|
||||||
][
|
][
|
||||||
@ -109,32 +109,26 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
|
|
||||||
#text(size: 1.1em, weight: "bold")[Training Setup]
|
#text(size: 1.1em, weight: "bold")[Training Setup]
|
||||||
|
|
||||||
- 858 training files, 172 test files
|
- *858* training files, *172* test files
|
||||||
- Only 18 training files and 1 test file contain foreign objects
|
- Only *18* training files and *1* test file contain foreign objects
|
||||||
- 1/4 downsampling ratio
|
- *1/4* downsampling ratio
|
||||||
- NVIDIA RTX 4090 GPU
|
- NVIDIA RTX 4090 GPU
|
||||||
|
|
||||||
][
|
][
|
||||||
#text(size: 1.1em, weight: "bold")[Data Collection]
|
#text(size: 1.1em, weight: "bold")[Data Collection]
|
||||||
|
|
||||||
- 1,031 PLY files with 248M+ points
|
- *1,031* PLY files with *248M+* points
|
||||||
- 13 semantic classes including railway infrastructure elements
|
- *13* semantic classes including railway infrastructure elements
|
||||||
- "Box" class (label 11) represents foreign objects
|
- "Box" class (label *11*) represents foreign objects
|
||||||
- Extreme class imbalance: boxes only 0.001% of points
|
- Extreme class imbalance: boxes only *0.001%* of points
|
||||||
|
|
||||||
]
|
]
|
||||||
|
|
||||||
#slide(composer: (1fr, 3fr))[
|
#slide(composer: (2fr, 3fr))[
|
||||||
#text(size: 1em, weight: "bold")[Inspection on data]
|
#text(size: 1.2em, weight: "bold")[Inspection on data]
|
||||||
#v(1em)
|
#v(1em)
|
||||||
#text(size: 0.8em)[Table: Distribution of semantic classes in the railway LiDAR dataset]
|
#text(size: 0.8em)[Table: Distribution of semantic classes in the railway LiDAR dataset]
|
||||||
][
|
][
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// #text(size: 1.1em, weight: "bold")[Inspection on Data]
|
|
||||||
|
|
||||||
|
|
||||||
#set text(size: 0.7em)
|
#set text(size: 0.7em)
|
||||||
#table(
|
#table(
|
||||||
columns: (auto, auto, auto, auto),
|
columns: (auto, auto, auto, auto),
|
||||||
@ -153,7 +147,7 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
[8], [Mountain], [51,685,366], [20.82%],
|
[8], [Mountain], [51,685,366], [20.82%],
|
||||||
[9], [Train], [9,047,963], [3.65%],
|
[9], [Train], [9,047,963], [3.65%],
|
||||||
[10], [Human], [275,077], [0.11%],
|
[10], [Human], [275,077], [0.11%],
|
||||||
[11], [Box (foreign object)], [3,080], [0.001%],
|
[11], [*Box (object)*], [*3,080*], [*0.001%*],
|
||||||
[12], [Others], [2,360,810], [0.95%],
|
[12], [Others], [2,360,810], [0.95%],
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -190,7 +184,7 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
#slide()[
|
#slide()[
|
||||||
#text(weight: "bold")[Results]
|
#text(weight: "bold")[Results]
|
||||||
|
|
||||||
- The overall mean IoU across all classes was 70.29\%,
|
- The overall mean IoU across all classes was *70.29\%*,
|
||||||
- the IoU for our target class— *"Box"* (foreign object)—was *0.00\%* (Will be discussed later).
|
- the IoU for our target class— *"Box"* (foreign object)—was *0.00\%* (Will be discussed later).
|
||||||
- IoU of other classes was relatively high, with *"Train"* achieving *95.22\%* and *"Ground"* achieving *89.68\%*.
|
- IoU of other classes was relatively high, with *"Train"* achieving *95.22\%* and *"Ground"* achieving *89.68\%*.
|
||||||
][
|
][
|
||||||
@ -237,15 +231,14 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
|
|
||||||
Let's look at Cross Entropy Loss:
|
Let's look at Cross Entropy Loss:
|
||||||
|
|
||||||
// \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
|
|
||||||
// l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}
|
|
||||||
// \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}
|
|
||||||
$
|
$
|
||||||
ell(x, y) = 1 / N sum_(n=1)^N - w_(y_n) log frac(exp(x_{n,y_n}) , sum_(c=1)^C exp(x_{n,c}))
|
ell(x, y) = 1 / N sum_(n=1)^N - w_(y_n) log frac(exp(x_{n,y_n}) , sum_(c=1)^C exp(x_{n,c}))
|
||||||
$
|
$
|
||||||
|
|
||||||
where $w_{y_n}$ is the weight for class $y_n$ and $N$ is the number of points in the batch.
|
where $w_{y_n}$ is the weight for class $y_n$ and $N$ is the number of points in the batch.
|
||||||
|
|
||||||
|
In this case we just *blindly set weight for all class as 1*, which is not suitable. We should add weight on classes like boxes and human.
|
||||||
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@ -263,7 +256,9 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
|
|
||||||
#slide(align: auto)[
|
#slide(align: auto)[
|
||||||
|
|
||||||
#v(6em)
|
#text(weight: "bold")[Why Model Performs Bad on Boxes]
|
||||||
|
|
||||||
|
#v(5em)
|
||||||
|
|
||||||
The model is *biased towards the majority classes*, leading to poor performance on the minority class (foreign objects).
|
The model is *biased towards the majority classes*, leading to poor performance on the minority class (foreign objects).
|
||||||
|
|
||||||
@ -273,9 +268,9 @@ The function $f: P -> L$ maps the input point cloud to a set of labels $L = \{l_
|
|||||||
|
|
||||||
#text(weight: "bold")[Future Work]
|
#text(weight: "bold")[Future Work]
|
||||||
|
|
||||||
- Add weights in loss functions to address class imbalance
|
- Add weights in loss functions to *address class imbalance*
|
||||||
- Explore data augmentation techniques to increase the representation of the "Box" class
|
- Explore *data augmentation* techniques to increase the representation of the "Box" class
|
||||||
- Consider ensemble methods or multi-task learning to improve detection performance
|
- Consider *ensemble methods* or multi-task learning to improve detection performance
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user